Home
Class 11
MATHS
For any integer k , let alphak=cos((kpi...

For any integer `k ,` let `alpha_k=cos((kpi)/7)+isin((kpi)/7),w h e r e i=sqrt(-1)dot` Value of the expression `(sum_(k=1)^(12)|alpha_(k+1)-alpha_k|)/(sum_(k=1)^3|alpha_(4k-1)-alpha_(4k-2)|)` is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series sum_(k=1)^(360)((1)/(k sqrt(k+1)+(k+1)sqrt(k)))

Evaluate the sum , sum_(k=1)^(n)(1)/(k(k+1)(k+2)……..(k+r)) .

If alpha=e^(2 pi(i)/(11)) and f(x)=5+sum_(k=1)^(60)A_(x)^(k), then the value of sum_(r=0)^(10)f(alpha^(r)x) is

If an angle alpha is divided into two parts A&B such that A-B=x and tan A:tan B=k:1 Then the value of sin x is (A) (k+1)/(k-1)sin alpha (k)/(k+1)sin alpha (C) (k-1)/(k+1)sin alpha (D) tan alpha

sum_(k=1)^(oo)sum_(r=1)^(k)1/(4^(k))(""^(k)C_(r)) is equal to=________

If z_(k)=e^(i theta) for k=1,2,3,4, where i^(2)=-1, and if |sum_(k=1)^(4)(1)/(z_(k))|=1, then |sum_(k=1)^(4)z_(k)| is equal to

a_(k)=(1)/(k(k+1)) for k=1,2,3,4,...n then (sum_(k=1)^(n)a_(k))^(2)=

sum_(m=1)^(32)m[sum_(k=1)^(6)sin2k(pi)/(7)-i cos2k(pi)/(7)]