Home
Class 12
MATHS
[" 16.If "x" and "y" are positive intege...

[" 16.If "x" and "y" are positive integers satisfying "tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=tan^(-1)((1)/(7))," then the "],[" number of ordered pairs "(x,y)" is: "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are positive integer satisfying tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7) , then the number of ordered pairs of (x,y) is

If x and y are positive integer satisfying tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7) , then the number of ordered pairs of (x,y) is

If x and y are positive integer satisfying tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7) , then the number of ordered pairs of (x,y) is

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is

Tan^(-1)(x/y)-Tan^(-1)((x-y)/(x+y))=

If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-1)3 , then:

If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-1)3 , then:

tan^(-1)""(x)/(y)-tan^(-1)""(x-y)/(x+y)=

tan ^(-1)((1)/(x+y))+tan ^(-1)((y)/(x^(2)+x y+1))=