Home
Class 11
MATHS
Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^...

Show that `(x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: (x^(2)+y^(2))^(5)=(x^(5)-10x^(3)y^(2)+5xy^(4))^(2)+(5x^(4)-10x^(2)y^(3)+y^(5))^(2)

Simplify each of the following: (4x+2y)^(2)+(4x-2y)^(2)(4x+2y)^(3)-(4x-2y)^(2)

If (4x^2-3y^2):(2x^2+5y^2)=12:19 then x:y=

Circles x^(2)+y^(2)=4 and x^(2)+y^(2)-2x-4y+3=0

2x+3y=5 4x-5y=6

4x+3y=5, 2x-y=2

Subtract: x^2-3x y+7y^2-2 from 6x y-4x^2-y^2+5

From the sum of x^2+3y^2-6x y ,2x^2-y^2+8x y , y^2+8 and x^2-3x y\ subtract -3x^2+4y^2-x y+x-y+3.

If x^(2)+y^(2)=1 and P=(3x-4x^(3))^(2)+(3y-4y^(3))^(2) then P is equal to