Home
Class 12
MATHS
a sin((A)/(2)+B)=(b+c)sin(A)/(2)...

a sin((A)/(2)+B)=(b+c)sin(A)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C= pi and (sin 2 A + sin 2B + sin 2 C)/(sin A + sin B + sin C ) = lamda sin ((A)/(2)) sin ((B)/(2)) sin ((C )/(2)) , then the value of lamda must be

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))

Prove that, sinA+sinB+sinC-sin(A+B+C)= 4sin((A+B)/(2))sin((B+C)/(2))sin((C+A)/(2))

In any triangle ABC, prove that : a sin (A/2+B)= (b +c) sin frac (A)(2) .

In any triangle ABC, prove that following: a(sin A)/(2)sin((B-C)/(2))+b(sin B)/(2)sin((C-A)/(2))+sin((A-B)/(2))=0

If P is a point on the altitude AD of the triangle ABC such the /_CBP=(B)/(3), then AP is equal to 2a sin(C)/(3)( b) 2b sin(C)/(3)2c sin(B)/(3)(d)2c sin(C)/(3)

(sin2A + sin2B + sin2C) / (sin A + sin B + sin C) = 8sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

In DeltaABC , prove that: (a^(2)sin(B-C))/(sinA) + (b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0