Home
Class 11
MATHS
if sqrt(x^2+y^2)=ae^(tan^-1 (y/x)) , a >...

if `sqrt(x^2+y^2)=ae^(tan^-1 (y/x)) , a > 0, (y(0) > 0)` then `y"(0)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(x^(2) + y^(2))=a. e^(tan^(-1)((y)/(x))), a gt 0 then the value of y''(0) is…….

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

If (dy)/(dx)+y tan x=sin2x and y(0)=1 , then y(pi) is equal to :

If (dy)/(dx)+y tan x=sin2x and y(0)=1, then y(pi) is equal to: