Home
Class 14
MATHS
" 13."(p+q+r)^(2)+x(p+q+r)-y(p+q+r)...

" 13."(p+q+r)^(2)+x(p+q+r)-y(p+q+r)

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation " "(q-r)x^(2)+(r-p)x+(p-q)=0 are :a) (r-p)(q-r), 1 b) (p-q)/(q-r), 1 c) (p-r)/(q-r), 2 d) (q-r)/(p-q), 2

If p, q, r are in A.P the p^(2) (q + r), q^(2) (r + p), r^(2) (p+q) are in

7. Let A= {p, q, r}. Which of the following is an equivalence relation on A?(a) R, = {(p, q), (q, r), (p, r), (p, q)} (b) R2 = {(1,9).(,p), (r,r). (9,7)} (c) Rz = {(p, p), (q,9), (r, r), (p, q)} (d) one of these

If (p)/( q - r) = (p + q)/( r) = (q)/( p) , Then find q : p : r

If Q = (p + q + r )/(2) & (Q-p ) : (Q-q) : (Q -r)::17:5:8. then p :q:r = ?

On simplification (a^p/a^q)^(p+q) xx(a^q/a^r)^(q+r)xx(a^r/a^p)^(r+p) yeilds

If p(q-r)x^(2) + q(r-p)x+ r(p-q) = 0 has equal roots, then show that p, q, r are in H.P.

(2) If a=x^(q+r)*y^(p) , b=x^(r+p)*y^(q) , c=x^(p+q)y^(r) , show that a^(q-r)b^(r-p)c^(p-q)=1