Home
Class 11
MATHS
Let Z1 = (8 + i)sin theta + (7 + 4i)cos...

Let `Z_1 = (8 + i)sin theta + (7 + 4i)cos theta and Z_2 = (1 + 8i)sin theta + (4 + 7i)cos theta` are two complex numbers. If `Z_1* Z_2 = a + ib` where `a, b in R` then the largest value of `(a + b) AA theta in R`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If Z = (A sin theta + B cos theta)/(A + B) , then

((cos theta + i sin theta) / (sin theta + i cos theta)) ^ (4) = cos8 theta + i sin8 theta

[(1 + cos theta + i sin theta) / (sin theta + i (1 + cos theta))] ^ (4) = cos n theta + i sin n theta

Let z_(1)=r_(1)(cos theta_(1)+i sin theta_(1)) and z_(2)=r_(2)(cos theta_(2)+i sin theta_(2)) be two complex numbers then prove the following

The real part of z = (1)/(1-cos theta + i sin theta) is

8 sin theta * cos theta * cos 2 theta * cos 4 theta = A) sin 4 theta B) sin 8 theta C) sin 16 theta D) cos 8 theta

If z=sin theta-i cos theta then for any integer n