Home
Class 9
MATHS
[" 1.Prove that "a^(2)+b^(2)+c^(2)-ab-bc...

[" 1.Prove that "a^(2)+b^(2)+c^(2)-ab-bc-ca" is always non-negative for all values of "a,b],[" and "c" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a^2+b^2+c^2-a b-b c-c a is always non-negative for all values of a ,b a nd c.

Prove that a^2+b^2+c^2-a b-b c-c a is always non-negative for all values of a ,\ b\ a n d\ c

Prove that a^(2)+b^(2)+c^(2)=2(ab cos C +bc cosA +ca cos B)

If a^(2)+b^(2)+c^(2)-ab-bc-ca=0, prove that a=b=c

If :a^(2)+b^(2)+c^(2)-ab-bc-ca=0, prove that a=b=c

Prove that |[b^2+c^2,ab,ac],[ab,c^2+a^2,bc],[ca,cb,a^2+b^2]| is always positive for real a, b and c.

If a!=b!=c then prove that (a^(2)+b^(2)+c^(2))/(ab+bc+ca)>1

If a^2 + b^2 + c^2 -ab-bc-ca = 0 , then prove that a=b=c

Prove that det[[1,a,a^(2)-bc1,b,b^(2)-ca1,c,c^(2)-ab]]=0