Home
Class 14
MATHS
" Find "log(24)48" in terms of "alpha" i...

" Find "log_(24)48" in terms of "alpha" if "log_(12)36=alpha

Promotional Banner

Similar Questions

Explore conceptually related problems

Find log_(2)(48) in terms of iflog_(12)(36)=

If (log)_(10)(1025)/(1024)=alpha and (log)_(10) 2=beta, then the value of (log)_(10)4100 in terms of alpha and beta is equal to a. alpha+9beta b. alpha+12beta c. 12alpha+beta d. 9alpha+beta

If (log)_(10)(1025)/(1024)=alphaa n d(log)_(10)=beta, then the value of (log)_(10)4100 in terms of alpha and beta is equal to a. alpha+9beta b. alpha+12beta c. 12alpha+beta d. 9alpha+beta

If (log)_(10)(1025)/(1024)=alphaa n d(log)_(10)2=beta , then the value of (log)_(10)4100 in terms of alphaa n dbeta is equal to alpha+9beta (b) alpha+12beta 12alpha+beta (d) 9alpha+beta

If (log)_(10)(1025)/(1024)=alphaa n d(log)_(10)2=beta , then the value of (log)_(10)4100 in terms of alphaa n dbeta is equal to alpha+9beta (b) alpha+12beta 12alpha+beta (d) 9alpha+beta

If log_(12)18=alpha and log_(24)54=beta then the value of alpha beta+alpha-beta

If (log)_(10)(1028)/(1024)=alpha and(log)_(10)=beta, then the value of (log_(10))_(10)4100 in terms of alpha and beta is equal to a.alpha+9 beta b.alpha+12 beta c.12 alpha+beta d .9 alpha+beta

If alpha and beta are the roots of the equation (log_(2)x)^(2)+4(log_(2)x)-1=0 then the value of log_(beta)alpha+log_(alpha)beta equal to

Let log_(2) 3 = alpha , then log_(64) 729 is

Let log_(2) 3 = alpha , then log_(64) 729 is