Home
Class 11
MATHS
y=(x)/(a+(x)/(b+(x)/(a+(x)/(b))))...

y=(x)/(a+(x)/(b+(x)/(a+(x)/(b))))

Promotional Banner

Similar Questions

Explore conceptually related problems

y=(x)/(a+(x)/(b+(x)/(b+(x)/(b+-oo)))),(dy)/(dx)=(b)/(a(b+2y))

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y= (ax^(2))/((x-a)(x-b) (x-c)) + (bx)/((x-b) (x-c))+ (c )/((x-c)) + 1 then prove that (y')/(y)= (1)/(x) [(a)/(a-x) + (b)/(b-x) + (c)/(c-x)]

If y = (x^(a)/(x^(b)))^(a+b) .(x^(b)/(x^(c)))^(b+c) .(x^(c)/(x^(a)))^(c+a) then, dy/dx =

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then (y')/(y)=

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 find (dy)/(dx)

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then prove that (y')/(y)=(1)/(x)[(a)/(a-x)+(b)/(b-x)+(c)/(c-x)]