Home
Class 12
MATHS
I=int(0)^(1)x(1-x)^(9)dx...

I=int_(0)^(1)x(1-x)^(9)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x(1-x)^(9y)dx

int_(0)^(1)(1-x)^(9)dx=

int_(0)^(1)(1-x)^(9)dx=

What is int_(0)^(1)x (1-x)^(9) dx equal to ?

Evaluate : (i) int_(0)^(1)x(1-x)^(n)dx (ii) int_(0)^(1)x(1-x)^(3//2)dx

" If I=int_(0)^(1)(1-x^(4))^(7)dx and J=int_(0)^(1)(1-x^(4))^(6)dx then (I)/(J)

Evaluate I(b)=int_(0)^(1)(x^(b))dx=int_(0)^(1)(x^(b)-1)/("ln"x)dx,bge0 .

Evaluate I(b)=int_(0)^(1)(x^(b))dx=int_(0)^(1)(x^(b)-1)/("ln"x)dx,bge0 .

Evaluate : (i) int_(0)^(1//2)(dx)/(sqrt(1-x)) (ii) int_(0)^(1)((1-x)/(1+x))dx

The number of positive continuous f(x) defined in [0,1] for with I_(1)=int_(0)^(1)f(x)dx=1,I_(2)=int_(0)^(1)xf(x)dx=a , I_(3)=int_(0)^(1)x^(2)f(x)dx=a^(2) is /are