Home
Class 9
MATHS
" 4."x^(2)-(sqrt(3)+1)x+sqrt(3)=0...

" 4."x^(2)-(sqrt(3)+1)x+sqrt(3)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: x^(2)-(sqrt(3)+1)x+sqrt(3)=0

x^(2)-(sqrt(3)+1)x+sqrt(3)=0 2x^(2)+x-4=0

Is -sqrt(3) a root of the equation x^(2)+(sqrt(3)+1)x+sqrt(3)=0 ?

(4) sqrt(3)x^(2)+2x-sqrt(3)=0

If 4cos^(2)x-2(1+sqrt(3))cosx+sqrt(3)=0 the solution set in [0,pi] is

Solve x^(2)-(sqrt3+1)x+sqrt3=0 .

Solve x^(2)-(sqrt3+1)x+sqrt3=0 .

If 4sin^(2)x-2 (1+sqrt(3))sin x + sqrt(3)=0 then theta =

If A,B,C are the angles of a given triangle ABC . If cosA.cosB.cosC= (sqrt3-1)/8 and sinA.sinB.sinC= (3+sqrt3)/8 The cubic equation whose roots are tanA, tanB, tanC is (A) x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x-(3+2sqrt(3))=0 (B) x^3-(3+-2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0 (C) x^3+(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0 (D) x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0

If A,B,C are the angles of a given triangle ABC . If cosA.cosB.cosC= (sqrt3-1)/8 and sinA.sinB.sinC= (3+sqrt3)/8 The cubic equation whose roots are tanA, tanB, tanC is (A) x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x-(3+2sqrt(3))=0 (B) x^3-(3+-2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0 (C) x^3+(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0 (D) x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0