Home
Class 12
MATHS
" 6.If "|z(1)|=|z(2)|=|z(3)|=.......=|z(...

" 6.If "|z_(1)|=|z_(2)|=|z_(3)|=.......=|z_(n)|=1," then "|z_(1)+z_(2)+z_(3)+.......+z_(n)|=

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)|=…... .=|z_(n)|=1 then |z_(1)+z_(2)+ .+z_(n)|=

If |z_1|=|z_2|=|z_3|=......=|z_n|=1 , then |z_1+z_2+z_3+......+z_n|=

If |z_(1)|=|z_(2)|=....|z_(n)|=1 , then show that, |z_(1)+z_(2)+z_(3)+....z_(n)|= |(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))+...+(1)/(z_(n))|

If |z_1|=|z_2|=|z_3|"…."=|z_n|=1 then |z_(1)+z_(2)+"….."+z_(n)|=

If |z_(1)|=|z_(2)|=......=|z_(n)|=1, prove that |z_(1)+z_(2)+z_(3)++z_(n)|=(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))++(1)/(z_(n))

If |z_(1)|=|z_(2)|=...............=|z_(n)|=1 then |(1)/(z_(1))+(1)/(z_(2))+.........+(1)/(z_(n))|

Let z_(1),z_(2),z_(3),...,z_(n) be non zero complex numbers with |z_(1)|=|z_(2)|=|z_(3)|...=|z_(n)| then the number z=((z_(1)+z_(2))(z_(2)+z_(3))(z_(3)+z_(4))...(z_(n-1)+z_(n))(z_(n)+z_(1)))/(z_(1)z_(2)z_(3)...z_(n)) is

If |z_(1)-1|<1,|z_(2)-2|<2|z_(3)-3|<3 then |z_(1)+z_(2)+z_(3)|

If z_(1), z_(2),……..,z_(n) are complex numbers such that |z_(1)| = |z_(2)| = …….. = |z_(n)| = 1 , then |z_(1) + z_(2) +……..+ z_(n)| is equal to a) |z_(1)z_(2)z_(3)…..z_(n)| b) |z_(1)|+|z_(2)|+…….+|z_(n)| c) |(1)/(z_(1)) + (1)/(z_(2)) + ……….+ (1)/(z_(n))| d)n