Home
Class 12
MATHS
For k in N, let bk=int1^e1/((k+logx)(k+...

For `k in N,` let `b_k=int_1^e1/((k+logx)(k+1+logx))(dx)/x and a_n=sum_(k=1)^n b_k` Then

Promotional Banner

Similar Questions

Explore conceptually related problems

For n in N, let a_(n)=sum_(k=1)^(n)2k and b_(n)=sum_(k=1)^(n)(2k-1)* then lim_(n rarr oo)(sqrt(a)_(n)-sqrt(b_(n))) is equal to

Find sum_(k=1)^(n)(1)/(k(k+1)) .

If n in N, sum_(k=1)^(n)sin^(-1(x_(k))=(npi)/2 then the value of sum_(k=1)^(n)x_(k)=

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=

Given S_(n)=sum_(k=1)^(n)(k)/((2n-2k+1)(2n-k+1)) and T_(n)=sum_(k=1)^(n)(1)/(k) then (T_(n))/(S_(n)) is equal to

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

Suppose m and n are positive integers and let S=sum_(k=0)^(n)(-1)^(k)(1)/(k+m+1)(nC_(k)) and T=sum_(k=0)^(m)(-1)^(k)1(k+n+1)(mC_(k)) then S-T is equal to

The value of int_0^1 ( pi_(r=1)^n (x+r)) (sum_(k=1)^n 1/(x+k)) dx