Home
Class 11
MATHS
Roots of the equation are (z+1)^5=(z-1)^...

Roots of the equation are `(z+1)^5=(z-1)^5` are (a) `+-itan(pi/5),+-itan((2pi)/5)` (b)`+-icot(pi/5),+-icot((2pi)/5)` (c)`+-icot(pi/5),+-itan((2pi)/5)` (d)none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

tan""(2pi)/(5)-tan""(pi)/(15)-sqrt(3)tan""(2pi)/(5)tan""(pi)/(15)=?

Find the value tan((pi)/(5))+2tan((2 pi)/(5))+4cot((4 pi)/(5))

Which of the following is/are the value of "cos"[1/2cos^(-1)(cos(-(14pi)/5)]? cos(-(7pi)/5) (b) sin(pi/(10)) cos((2pi)/5) (d) -cos((3pi)/5)

sin ((pi) / (5)) sin ((2 pi) / (5)) sin ((3 pi) / (5)) sin ((4 pi) / (5)) =

The principal value of sin^(-1)(sin((2 pi)/(3))) is (a)-(2 pi)/(3) (b) (2 pi)/(3) (c) (4 pi)/(3) (d) (5 pi)/(3) (e) none of these

cos^-1 {-sin((5pi)/6)}= (A) - (5pi)/6 (B) (5pi)/6 (C) (2pi)/3 (D) -(2pi)/3

The value of cos(pi)/(5)cos.2(pi)/(5)cos4(pi)/(5)cos8(pi)/(5)=

Find the value of cos((2pi)/5).cos(pi/5)