Home
Class 11
MATHS
If z^3+3+2i(z+(-1+i a)=0 has on ereal ro...

If `z^3+3+2i(z+(-1+i a)=0` has on ereal roots, then the value of `a` lies in the interval `(a in R)` `(-2,1)` b. `(-1,0)` c. `(0,1)` d. `(-2,3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z^(3)+(3+2i)z+(-1+ia)=0, " where " i=sqrt(-1) , has one real root, the value of a lies in the interval (a in R)

If 2a+3b+6c=0, then prove that at least one root of the equation ax^(2)+bx+c=0 lies in the interval (0,1) .

If z_1 = 3i and z_2 = -1 -i , find the value of arg z_1/z_2 .

If I=int_0^1 (xdx)/(8+x^3) then the smallest interval in which I lies is (A) (0,1/8) (B) (0,1/9) (C) (0,1/10) (D) (0,1/7)

If a_(1),a_(2),a_(3) are the roots of z^(3)-3z^(2)+3z+7=0, then find the value of |sum_(i!=j)((a_(i)-1)/(a_(j)-1))|

If C={z:Re[(3+4i)z]=0} thenthe number of elements in the set BcapC is (A) 0 (B) 1 (C) 2 (D) none of these

If one root of x^(2)-(3+2i)x+(1+3i)=0 is 1+i then the other root is A) 1-i B) 2+i C) 3+i D) 1+3i