Home
Class 11
MATHS
If z=i^(i^(i)) where i=sqrt-1 then |z...

If `z=i^(i^(i))` where `i=sqrt-1` then `|z|` is equal to

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If iz^(3)+z^(2)-z+i=0, where i=sqrt(-1) then |z| is equal to 1 (b) (1)/(2)(c)(1)/(4) (d) None of these

If z=sqrt(2i), then z is equal to

Let z be a complex number such that |z| + z = 3 + i (Where i=sqrt(-1)) Then ,|z| is equal to

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

Let z = x + iy be a non - zero complex number such that z^(2) = I |z|^(2) , where I = sqrt(-1) then z lies on the :

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on