Home
Class 11
MATHS
Given that x^2-3x+1=0, then the value of...

Given that `x^2-3x+1=0,` then the value of the expression `y=x^9+x^7+x^(-9)+x^(-7)` is divisible by prime number.

Promotional Banner

Similar Questions

Explore conceptually related problems

factorize the given expression 10x^2-9x-7

If x^(2)-4x+1=0 , then what is the value of x^(9) + x^(7) -194x^(5)-194x^(3) ?

If x^2-4x+ 1 =0 , the what is the value of x^9 + x^7 - 194x^5 - 194x^3 ?

if (x-1)/(x+1)=(7)/(9)" then the value of "x

If |x-2|+|x-9|=7 then set of values of x

If 3x+5y =9 and 5x+3y=7, then find the value of x+y.

If x+y+z=12 and x^(2)+y^(2)+z^(2)=96 and (1)/(x)+(1)/(y)+(1)/(z)=36 then the value x^(3)+y^(3)+z^(3) divisible by prime number is

The value of x satisfying |x-1|^(log_(3)x^(2)-2log_(x)9)=(x-1)^(7) is

The simplified value of the given expression (9x^(2)-64)/(x-1-(1)/(1-(x)/(4+x)))

If (x-1)(x-3)(x-5)(x-7)=9, find the value of x.