Home
Class 12
MATHS
The number of points of non-differentiab...

The number of points of non-differentiability of the function `f(x)=(x^(2)-1)|x^(2)-x-2|+sin(|x|)+[(x^(2))/(2x^(2)+1)]` is (where `[.]` is greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+x+1-|[x]|=0, then (where [.] is greatest integer function) -

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

The range of the function f(x)=[log_((2)/(3))|(x^(2)-1)/(x^(2)+1)|] where [-1 denotes the greatest integer function is

The domain of the function f(x)=(1)/([x^(2)-1] is (where [.] is greatest integer function)

f(x)=sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] where [.1 denotes the greatest integer function.

The number of non differentiability of point of function f (x) = min ([x] , {x}, |x - (3)/(2)|) for x in (0,2), where [.] and {.} denote greatest integer function and fractional part function respectively.

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)