Home
Class 11
MATHS
Prove that: ("sin"(A-B))/(s in A s in B)...

Prove that: `("sin"(A-B))/(s in A s in B)+("sin"(B-C))/(s in B s in C)+("sin"(C-A))/(s in C s in A)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (sin(A-B))/(s in As in B)+(sin(B-C))/(s in Bs in C)+(sin(C-A))/(s in Cs in A)=0

In any triangle ABC, prove that following: (a^(2)sin(B-C))/(s in A)+(b^(2)sin(C-A))/(s in B)+(c^(2)sin(A-B))/(s in C)=0

If a/(sinA)=K , then the area of "DeltaA B C" in terms of K and sines of the angles is (K^2)/4s in A\ s in B\ s in C (b) (K^2)/2s in A\ s in B\ s in C 2K^2s in A\ s in B\ "sin"(A+B) (d) none

If A+B +C =2S, prove that : sin (S - A) + sin (S- B) + sin (S-C)-sinS= 4 sin frac (A)(2) sin frac (B)(2) sin frac (C)(2) .

If A + B + C = 2s, then prove that sin (s - A) sin (s - B) + sin s. sin (s - C) = sin A sin B .

If A+B+C=2S , prove that: sin(S-A)+sin(S-B)+sin(S-C)-sinS = 4sinA/2sinB/2sinC/2

If A +B+C= 2S , then prove that (i) sin (S-A)+sin (S-B) + sin C=4 cos . (S-A)/(2) cos. (S-B)/(2) sin .(C)/(2) (ii) cos (S-A)+cos (S-B)+cos C=-1+4 cos. (S-A)/(2) cos.(S-B)/(2)cos. (C)/(2)

In any triangle ABC, prove that following: a(s in B-s in C)+b(s in C-s in A)+c(s in A-s in B)=0

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

If A+B+C= 2S , " then " sin (S-A) sin(S-B) + sinS sin(S-C)=