Home
Class 11
MATHS
If log(a+c)+log(a+c-2b)=2log(a-c) then...

If `log(a+c)+log(a+c-2b)=2log(a-c)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

If (2)/(b)=(1)/(a)+(1)/(c) , then the value of (log(a+c)+log(a-2b+c))/(log(a-c)) is

If (2)/(b)=(1)/(a)+(1)/(c) ,then the value of (log(a+c)+log(a-2b+c))/(log(a-c)) is

If log( a+c), log(c-a) , log ( a-2b+c) are in A.P., then :

If a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2)=0 is a perfect square,then (log(a+c)+log(a-2b+c))/(log(a-c)) is equal to

if c(a-b)=a(b-c) then (log(a+c)+log(a-2b+c))/(log(a+c)) is equal to

If x = log_(c ) b + log_(b)c , y=log_(a)c + log_(c ) a, z=log_(b)a+log_(a)b , then show that x^(2) + y^(2) + z^(2) - 4 = xyz .

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.