Home
Class 12
MATHS
if A=[a(ij)](3xx3) such that a(ij)=2 , i...

if `A=[a_(ij)]_(3xx3)` such that `a_(ij)=2 , i=j` and `a_(ij)=0 , i!=j` then `1+log_(1/2) (|A|^(|adjA|))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(2×3) such that a_(ij)=i+j then a 11=

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

If A=[a_(ij)]_(mxxn) such that a_(ij)=(i+j)^(2) then find trace of A.

if A=[a_(ij)]_(2*2) where a_(ij)={i+j,i!=j and a_(ij)=i^(2)-2j,i=j then A^(-1) is equal to

In square matrix A=(a_(ij)) if i lt j and a_(ij)=0 then A is

let A={a_(ij)}_(3xx3) such that a_(ij)={3 , i=j and 0,i!=j} . then {det(adj(adjA))/5} equals: (where {.} represents fractional part)

let A={a_(ij)}_(3xx3) such that a_(ij)={3 , i=j and 0,i!=j . then {det(adj(adjA))/5} equals: (where {.} represents fractional part)

let A={a_(ij)}_(3xx3) such that a_(ij)={3 , i=j and 0,i!=j . then {det(adj(adjA))/5} equals: (where {.} represents fractional part)