Home
Class 8
MATHS
" (b) "f(x-(4x-3))=2x-5...

" (b) "f_(x-(4x-3))=2x-5

Promotional Banner

Similar Questions

Explore conceptually related problems

Find f ' (x) if f(x)=2x^3-5x^2-4x+3 ,

Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zero]. Then a) f(4x^3-3x)+3f(x)=0 b) f(4x^3-3x)=3f(x) c) f(2xsqrt(1-x^2)+2f(x)=0 d) f(2xsqrt(1-x^2)=2f(x)

If f: R to R is defined by f(x) = 2x+|x| , then show that f(3x) -f(-x) -4x=2f(x) .

{:( "Column" A ,, "Column" B) , ("If" a^(2) - b^(2) = 16 "and" a- b = 2 "," "then" a + b,, "(a)" 3x^(2) - x - 11), ("The degree of " (x-a) (x-b) (x - c) (x-d) ,, "(b)" 3x^(2) - x + 5), (4x^(2) + 20xy + 25y^(2) ,, (c) 8), ((5x^(2) + 7x -3)- (2x^(2) + 8x -8) ,, (d) 4), (,, (e) (4x + 5y) (x+ 5y)), (,,(f) (2x + 5y)^(2)):}

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

{:("Column A" , "A function f(x) is defined for all real numbers as","Column B"),(, f(x)=(x - 1)(x-2)(x-3)(x-4),),( f(2.5), ,f(3.5)):}

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

Let f:R-{3}rarr R be a real valued function satisfying the functional equation 3f(x)+2f((3x+5)/(x-3))=4x+2 Then f(x) is given as