Home
Class 9
MATHS
((x^(2)y^(2))/(a^(2)-b^(3)))^(h)...

((x^(2)y^(2))/(a^(2)-b^(3)))^(h)

Promotional Banner

Similar Questions

Explore conceptually related problems

(x+y)^(3)-(x-y)^(3) can be factorized as 2y(3x^(2)+y^(2)) (b) 2x(3x^(2)+y^(2))2y(3y^(2)+x^(2)) (d) 2x(x^(2)+3y^(2))

If H=(x^(2))/(a^(2))-(y^(2))/(b^(2))-1=0, C=(x^(2))/(a^(2))-(y^(2))/(b^(2))+1=0 and A=(x^(2))/(a^(2))-(y^(2))/(b^(2))=0 then H, A and C in

If H=(x^(2))/(a^(2))-(y^(2))/(b^(2))-1=0, C=(x^(2))/(a^(2))-(y^(2))/(b^(2))+1=0 and A=(x^(2))/(a^(2))-(y^(2))/(b^(2))=0 then H, A and C are in

If H=(x^(2))/(a^(2))-(y^(2))/(b^(2))-1=0, C=(x^(2))/(a^(2))-(y^(2))/(b^(2))+1=0 and A=(x^(2))/(a^(2))-(y^(2))/(b^(2))=0 then H, A and C are in

Multiply: (x^(6)-y^(6))by(x^(2)+y^(2))(x^(2)+y^(2))by(3a+2b)

if (x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

if (x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)