Home
Class 12
MATHS
|A|=|[1,-1,2],[0,2,-3],[3,-2,4]|...

|A|=|[1,-1,2],[0,2,-3],[3,-2,4]|

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of the following A=[[1,-1,2],[0,2,-3],[3,-2,4]]

if A=[[1,-1,2],[0,2,-3],[3,-2,4]] B=[[-2,0,1],[9,2,-3],[6,1,-2]] Prove that B=A^-1

if A=[[1,-1,2],[0,2,-3],[3,-2,4]] B=[[-2,0,1],[9,2,-3],[6,1,-2]] Using A^-1 solve the system of linear equation given below: x-y+2z=1, 2y-3z=1, 3x-2y+4z=2

Find the inverse of the matrix (if it exists): [[1,-1,2],[0,2,-3],[3,-2,4]]

Use product [[1,-1,2],[0,2,-3],[3,-2,4]][[-2,0,1],[9,2,-3],[6,1,-2]] to solve the system of equations x-y+2z=1 2y-3z=1 3x-2y+4z=2

Use product [[1,-1,2],[0,2,-3],[3,-2,4]][[-2,0,1],[9,2,-3],[6,1,-2]] to solve the system of equations x-y+2z = 1, 2y - 3z = 1, 3x-2y+4z = 2

Use product [[1,-1, 2],[ 0, 2,-3],[ 3,-2, 4]] [[-2, 0, 1],[ 9, 2,-3],[ 6, 1,-2]] to solve the system of equation: x-y+2z=1; 2y-3z=1; 3x-2y+4z=2

Use product [[1,-1, 2],[ 0, 2,-3],[ 3,-2, 4]] [[-2, 0, 1],[ 9, 2,-3],[ 6, 1,-2]] to solve the system of equation: x-y+2z=1 ; 2y-3z=1 ; 3x-2y+4z=2

If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]] , then |A^(-1)|=