Home
Class 11
MATHS
Show that ((x+b)(x+c))/((b-a)(c-a))+((x+...

Show that `((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1` is an identity.

Promotional Banner

Similar Questions

Explore conceptually related problems

The quadratic equation ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 (A) Two real and distinct roots (B) Two equal roots (C) non real complex roots (D) infinite roots

Solution of equation ((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))=1 is/are.

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .

Suppose, a, b, c are three distinct real numbers. Let P (x) = ((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b)) . When simplified, P (x) becomes

(1)/(1+x^(b-a)+x^(c-a))+(1)/(1+x^(a-b)+x^(c-b))+(1)/(1+x^(a-c)+x^(b-c))