Home
Class 14
MATHS
inte^(e(-1)) 1/(t(t+1)) dt...

`int_e^(e(-1)) 1/(t(t+1)) dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(e^(-1))^(e) (dt)/(t(t+1)) is equal to

Let A = int_0^(1) e^(t)/(t+1) dt , then int_0^(1) (t.e^(t^(2)))/(t^(2)+1) dt =

If int_0^1e^t/(t+1) dt=a , then int_(b-1)^b e^(-t)/(t-b-1) dt =

If rArr int_(0)^(1) (e^(-t))/(t+1) dt =a, "then"int_(b-1)^(b) (e^(-1))/(t-b-1)dt is equal to

If b=int_(0)^(1) (e^(t))/(t+1)dt , then int_(a-1)^(a) (e^(-t))/(t-a-1) is

If A = int_(0)^(1) (e^(t))/(1+ t)dt then int_(0)^(1) e^(t) ln (1 + t) dt=

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=