Home
Class 11
MATHS
" Prove that "quad sin(pi)/(14)*sin(3 pi...

" Prove that "quad sin(pi)/(14)*sin(3 pi)/(14)*sin(5 pi)/(14)=(1)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that "sin"(pi)/(14)"sin"(3pi)/(14)"sin"(5pi)/(14)"sin"(7pi)/(14)=(1)/(8)

Prove that: sin((pi)/(14))sin((3 pi)/(14))sin((5 pi)/(14))sin((7 pi)/(14))sin((9 pi)/(14))sin((11 pi)/(14))sin((13 pi)/(14))=(1)/(64)

Prove that sin (pi/14)sin((3pi)/14)sin((5pi)/14)=1/8

The value of sin((pi)/(14))sin((3 pi)/(14))sin((5 pi)/(14)) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi)/(14)sin(3 pi)/(14)sin(5 pi)/(14)sin(7 pi)/(14)sin(9 pi)/(14)sin(11 pi)/(14)sin(13 pi)/(14) is equal to

let cos((pi)/(7)),cos((3 pi)/(7)),cos((5 pi)/(7)), the roots of equation 8x^(3)-4x^(2)-4x+1=0 then the value of sin((pi)/(14)),sin((3 pi)/(14)),sin((5 pi)/(14))