Home
Class 9
MATHS
lim(x rarr0)(e^(x)-e^(-x))/(x)=?...

lim_(x rarr0)(e^(x)-e^(-x))/(x)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr0)(e^(x)-e^(-x)-2x)/(x^(3))

Find lim_(x rarr0)(e^(x)-e^(-x)-2)/(x^(2))

lim_(x rarr0)((e^(3x)-e^(2x))/(x))

Evaluate the following limit: (lim)_(x rarr0)(e^(3x)-e^(2x))/(x)

Evaluate: "lim_(x rarr0)((e^(x)-e^(-x))/(2))

Evaluate the limits,if exist lim_(x rarr0)(e^(2+x)-e^(2))/(x)

lim_(x rarr0)(e^(x)-e^(sin x))/(x-sin x)

lim_(x rarr0)((e^(x)-e^(-x))/(sin x))

Evaluate: lim_(x rarr0)(e^(x)+e^(-x)-2)/(x^(2))