Home
Class 12
MATHS
sincot^-1costan^-1 2...

`sincot^-1costan^-1 2`

Promotional Banner

Similar Questions

Explore conceptually related problems

sincot^-1 costan^-1 2 =

The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)sincot^(- 1)sqrt(2)t)}*{sqrt((1+2t^2)/(2+t^2))} can take the value

Let alpha = tan^-1 (1/2)+tan^-1(1/3) , beta=cos^-1(2/3)+cos^-1(sqrt5/3) , gamma=sin^-1(sin((2pi)/3))+1/2cos^-1(cos((2pi)/3)) then sincot^-1 tancos^-1 (sin gamma) is equal to (A) 2singamma (B) sin(gamma/2) (C) 1/2 sin gamma (D) cosgamma

Let alpha = tan^-1 (1/2)+tan^-1(1/3) , beta=cos^-1(2/3)+cos^-1(sqrt5/3) , gamma=sin^-1(sin((2pi)/3))+1/2cos^-1(cos((2pi)/3)) sincot^-1 tancos^-1 (sin gamma) is equal to (A) 2singamma (B) sin(gamma/2) (C) 1/2 sin gamma (D) cosgamma

Simplify sincot^(-1)tancos^(-1)x

Simplify sincot^(-1)tancos^(-1)x , x >0

Simplify sincot^(-1)tancos^(-1)x , x >0

Simplify sincot^(-1)tancos^(-1)x , x >0

Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))

Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))