Home
Class 12
MATHS
Let f(x)={x^3+x^2+10 x ,\ \ x<0-3sinx ,\...

Let `f(x)={x^3+x^2+10 x ,\ \ x<0-3sinx ,\ \ \ \ xgeq0` . Investigate `x=0` for local maxima/minima.

Text Solution

Verified by Experts

The correct Answer is:
Since `f_(0) gt 0` and `f_(+)(0), x= 0` is the point of local maximum.
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise SOLVED PROBLEMS (Subjective)|13 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|31 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= {x^(3)+x^(2)+10x, xlt0 .Investigate x=0 for local -3sinx,xge0 maxima/minima.

Let f(x) = 2x^2 –10x , oo < x <= -5 and f(x)=x^2-5 , -5 < x < 3 and f(x)=x^2+1 , 3 <= x < oo Number of negative integers in the range of the function f(x) is

Let f(x)={x^(3)-x^(2)+10x-5,x 1 The set of values of x=1, is given by

Let f(x)={x^(3)+x^(2)-10x,-1<=x<=0,sin x,0<=x<(pi)/(2),1+cos x,(pi)/(2)<=x<=pi then 'f(x) has

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le x):}" Then at "x=pi/2 , f(x) has:

Let f(x)=( x^2+3x-10)/(x-2) , x=!2. The value f(2) = _____ will make the function f(x) continous at x=2.

let f(x)=2x^2-10x , -oo < x= x<= -5 and x^2-5 , -5 < x <3 and f(x)=x^2+1 , 3 <= x

Let f(x)=x^3-6x^2+12x-3 . Then at x=2 f(x) has