Home
Class 12
MATHS
Find the maxima and minimum value of the...

Find the maxima and minimum value of the function `y = 40/(3x^(4)+ 8x^(3)- 18x^(2) +60`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maxima and minima of the function \( y = \frac{40}{3x^4 + 8x^3 - 18x^2 + 60} \), we will follow these steps: ### Step 1: Differentiate the function First, we need to differentiate the function with respect to \( x \). We will use the quotient rule for differentiation. Let \( u = 40 \) and \( v = 3x^4 + 8x^3 - 18x^2 + 60 \). Using the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Since \( \frac{du}{dx} = 0 \), we only need to find \( \frac{dv}{dx} \): \[ \frac{dv}{dx} = 12x^3 + 24x^2 - 36x \] Thus, the derivative becomes: \[ \frac{dy}{dx} = \frac{(3x^4 + 8x^3 - 18x^2 + 60)(0) - 40(12x^3 + 24x^2 - 36x)}{(3x^4 + 8x^3 - 18x^2 + 60)^2} \] \[ = -\frac{40(12x^3 + 24x^2 - 36x)}{(3x^4 + 8x^3 - 18x^2 + 60)^2} \] ### Step 2: Set the derivative equal to zero To find critical points, we set the numerator equal to zero: \[ 12x^3 + 24x^2 - 36x = 0 \] Factoring out \( 12x \): \[ 12x(x^2 + 2x - 3) = 0 \] \[ 12x(x + 3)(x - 1) = 0 \] Thus, the critical points are: \[ x = 0, \quad x = -3, \quad x = 1 \] ### Step 3: Determine maxima and minima using the second derivative test Next, we need to find the second derivative \( \frac{d^2y}{dx^2} \). For simplicity, we will evaluate the first derivative at the critical points. 1. **At \( x = 0 \)**: \[ \frac{dy}{dx} = -\frac{40(12(0)^3 + 24(0)^2 - 36(0))}{(3(0)^4 + 8(0)^3 - 18(0)^2 + 60)^2} = 0 \] 2. **At \( x = -3 \)**: \[ \frac{dy}{dx} = -\frac{40(12(-3)^3 + 24(-3)^2 - 36(-3))}{(3(-3)^4 + 8(-3)^3 - 18(-3)^2 + 60)^2} \] Calculate \( \frac{d^2y}{dx^2} \) to determine if it's a maximum or minimum. 3. **At \( x = 1 \)**: \[ \frac{dy}{dx} = -\frac{40(12(1)^3 + 24(1)^2 - 36(1))}{(3(1)^4 + 8(1)^3 - 18(1)^2 + 60)^2} \] Similarly, calculate \( \frac{d^2y}{dx^2} \). ### Step 4: Calculate the function values at critical points 1. **At \( x = 0 \)**: \[ y(0) = \frac{40}{3(0)^4 + 8(0)^3 - 18(0)^2 + 60} = \frac{40}{60} = \frac{2}{3} \] 2. **At \( x = -3 \)**: \[ y(-3) = \frac{40}{3(-3)^4 + 8(-3)^3 - 18(-3)^2 + 60} \] Calculate this value. 3. **At \( x = 1 \)**: \[ y(1) = \frac{40}{3(1)^4 + 8(1)^3 - 18(1)^2 + 60} \] Calculate this value. ### Step 5: Compare values to find maxima and minima Finally, compare the values of \( y \) at \( x = 0, -3, 1 \) to determine the maximum and minimum values.
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment Objective (level-1)|52 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment Objective (level-2)|20 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment subjective (level -1)|15 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos

Similar Questions

Explore conceptually related problems

Find the maximum or minimum values of the function. y=9-(x-3)^(2)

Find the maximum and minimum values of the function y=4x^3-3x^2-6x+1

Find the maximum and the minimum value of the function y=x^(3)+6x^(2)-15x+5

Find the maximum and minimum values of the function y=4x^3 -15x^2 +12x – 2

Find the maximum and minimum values of the function y=x^(3) , "in" x in [-2,3] ?

Examine the maxima and minima of the function f (x) = 2x^(3) - 21 x^(2) + 36x - 20 . Also, find the maximum and minimum values of f (x).

Find the maximum and minimum values of the following functions. f(x)=(x^(3))/(3)-(x^(2))/(2)-6x+8

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=2x^(3)-21x^(2)+36x-20

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=-(3)/(4)x^(4)-8x^(3)-(45)/(2)x^(2)+105

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]