Home
Class 12
MATHS
Find the least and greatest value of f(x...

Find the least and greatest value of `f(x,y) = x^(2) + y ^(2) - xy` where x and y are connected by the relation `x^(2)+4y^(2) = 4`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the least and greatest values of the function \( f(x,y) = x^2 + y^2 - xy \) under the constraint \( x^2 + 4y^2 = 4 \), we can follow these steps: ### Step 1: Rewrite the constraint in standard form The given constraint can be rewritten as: \[ \frac{x^2}{4} + \frac{y^2}{1} = 1 \] This represents an ellipse with semi-major axis \( a = 2 \) and semi-minor axis \( b = 1 \). ### Step 2: Use parametric equations for the ellipse To express \( x \) and \( y \) in terms of a parameter \( \theta \), we use the parametric equations: \[ x = 2 \cos \theta, \quad y = \sin \theta \] ### Step 3: Substitute the parametric equations into the function Now substitute \( x \) and \( y \) into the function \( f(x,y) \): \[ f(2 \cos \theta, \sin \theta) = (2 \cos \theta)^2 + (\sin \theta)^2 - (2 \cos \theta)(\sin \theta) \] Calculating this gives: \[ = 4 \cos^2 \theta + \sin^2 \theta - 2 \cos \theta \sin \theta \] \[ = 4 \cos^2 \theta + \sin^2 \theta - \sin(2\theta) \] ### Step 4: Simplify the expression Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ = 4 \cos^2 \theta + (1 - \cos^2 \theta) - \sin(2\theta) \] \[ = 3 \cos^2 \theta + 1 - \sin(2\theta) \] ### Step 5: Express \( \sin(2\theta) \) in terms of \( \cos(2\theta) \) Recall that \( \sin(2\theta) = 2 \sin \theta \cos \theta \). We can also express \( \cos^2 \theta \) in terms of \( \cos(2\theta) \): \[ \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \] Substituting this back, we get: \[ f(\theta) = 3 \left(\frac{1 + \cos(2\theta)}{2}\right) + 1 - \sin(2\theta) \] \[ = \frac{3}{2} + \frac{3}{2} \cos(2\theta) + 1 - \sin(2\theta) \] \[ = \frac{5}{2} + \frac{3}{2} \cos(2\theta) - \sin(2\theta) \] ### Step 6: Find the maximum and minimum values This expression can be treated as \( A \cos(2\theta) + B \sin(2\theta) \) where \( A = \frac{3}{2} \) and \( B = -1 \). The maximum and minimum values of \( A \cos(2\theta) + B \sin(2\theta) \) can be found using: \[ \sqrt{A^2 + B^2} = \sqrt{\left(\frac{3}{2}\right)^2 + (-1)^2} = \sqrt{\frac{9}{4} + 1} = \sqrt{\frac{13}{4}} = \frac{\sqrt{13}}{2} \] Thus, the maximum and minimum values of the function are: \[ \text{Maximum} = \frac{5}{2} + \frac{\sqrt{13}}{2} \] \[ \text{Minimum} = \frac{5}{2} - \frac{\sqrt{13}}{2} \] ### Final Answer The least value of \( f(x,y) \) is \( \frac{5 - \sqrt{13}}{2} \) and the greatest value is \( \frac{5 + \sqrt{13}}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment Objective (level-1)|52 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment Objective (level-2)|20 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment subjective (level -1)|15 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos

Similar Questions

Explore conceptually related problems

Find the least and the greatest value of f(x , y) = x^(2) + y^(2) - xy where x and y are connected by the relation x^(2) + 4y^(2) = 4

Find the greatest value of x^(2)y^(3)z^(4) if x^(2)+y^(2)+z^(2)=1, where x,y,z are positive.

Let f(x,y)=x^(2)+2xy+3y^(2)-6x-2y, where x, y in R, then

Find the greatest value of x^(2)y^(3), where x and y lie in the first quadrant on the line 3x+4y=5.

Find the greatest value of x^(3)y^(4) if 2x+3y=7 and x>=0,y>=0 .

If 3x+2y=12 and xy=6, find the value of 9x^(2)+4y^(2)

If 3x+2y=12 and xy=6, find the value of 9x^(2)+4y^(2)

If 3x+2y=12 and xy=6, find the value of 9x^(2)+4y^(2)

If 2x+3y=8 and xy=2, find the value of 4x^(2)+9y^(2)