Home
Class 12
MATHS
If(y^(2)-5y+3)sqrt(((1+cosx))sqrt((1+cos...

If`(y^(2)-5y+3)sqrt(((1+cosx))sqrt((1+cosx)sqrt(1+cosx)...infty)) lt4` for all `x in R`, then find the all possible values of y.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((y^2 - 5y + 3) \sqrt{(1 + \cos x) \sqrt{(1 + \cos x) \sqrt{(1 + \cos x) \ldots}}} < 4\) for all \(x \in \mathbb{R}\), we will follow these steps: ### Step 1: Simplify the Infinite Nested Radical Let: \[ t = \sqrt{(1 + \cos x) \sqrt{(1 + \cos x) \sqrt{(1 + \cos x) \ldots}}} \] Then, we can express \(t\) as: \[ t = \sqrt{(1 + \cos x) t} \] Squaring both sides gives: \[ t^2 = (1 + \cos x) t \] Rearranging this, we get: \[ t^2 - (1 + \cos x) t = 0 \] Factoring out \(t\): \[ t(t - (1 + \cos x)) = 0 \] Thus, \(t = 0\) or \(t = 1 + \cos x\). Since \(t\) must be non-negative, we have: \[ t = 1 + \cos x \] ### Step 2: Determine the Range of \(t\) The cosine function, \(\cos x\), varies between -1 and 1. Therefore: \[ 1 + \cos x \text{ varies from } 0 \text{ to } 2 \] Thus, \(t\) varies from \(0\) to \(2\). ### Step 3: Substitute \(t\) into the Inequality Now, substituting \(t\) into the original inequality: \[ (y^2 - 5y + 3)(1 + \cos x) < 4 \] To satisfy this inequality for all \(x\), we need to consider the maximum value of \(1 + \cos x\), which is \(2\): \[ (y^2 - 5y + 3) \cdot 2 < 4 \] This simplifies to: \[ y^2 - 5y + 3 < 2 \] or: \[ y^2 - 5y + 1 < 0 \] ### Step 4: Solve the Quadratic Inequality Now, we need to solve the quadratic inequality: \[ y^2 - 5y + 1 < 0 \] First, we find the roots of the equation \(y^2 - 5y + 1 = 0\) using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{25 - 4}}{2} = \frac{5 \pm \sqrt{21}}{2} \] Let: \[ y_1 = \frac{5 - \sqrt{21}}{2}, \quad y_2 = \frac{5 + \sqrt{21}}{2} \] ### Step 5: Determine the Intervals The quadratic \(y^2 - 5y + 1\) opens upwards (since the coefficient of \(y^2\) is positive). Therefore, it is negative between its roots: \[ \frac{5 - \sqrt{21}}{2} < y < \frac{5 + \sqrt{21}}{2} \] ### Conclusion The possible values of \(y\) that satisfy the original inequality for all \(x \in \mathbb{R}\) are: \[ y \in \left( \frac{5 - \sqrt{21}}{2}, \frac{5 + \sqrt{21}}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment Objective (level-1)|52 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment Objective (level-2)|20 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment subjective (level -1)|15 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos

Similar Questions

Explore conceptually related problems

y= sqrt(cosx)+sqrt(cossqrt(x)) Find y'

int(sqrt(1+cosx))/(1-cosx)dx=

(d)/(sx)[log(sqrt((1-cosx)/(1+cosx)))]=

sin^(-1){sqrt((1-cosx)/(2))}

intcot^(-1)sqrt((1+cosx)/(1-cosx))dx=

If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2) and x in (pi,2pi) then 'a' is equal to :

int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

intsinx/sqrt (1+cosx)dx

sqrt(3)cosx+sinx=1