Home
Class 12
MATHS
If f(x) = x^(2) e^(-x^(2)/a^(2) is an in...

If `f(x) = x^(2) e^(-x^(2)/a^(2)` is an increasing function then` (for a gt 0)`, x lies in the interval

A

[a, 2a]

B

`(-infty, -a]cup[0, a]`

C

`(-a, 0)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the interval in which the function \( f(x) = x^2 e^{-\frac{x^2}{a^2}} \) is increasing, we need to find the derivative of the function and analyze where it is greater than or equal to zero. ### Step 1: Find the derivative of \( f(x) \) The function is given by: \[ f(x) = x^2 e^{-\frac{x^2}{a^2}} \] Using the product rule, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(x^2) \cdot e^{-\frac{x^2}{a^2}} + x^2 \cdot \frac{d}{dx}\left(e^{-\frac{x^2}{a^2}}\right) \] Calculating the derivatives: 1. The derivative of \( x^2 \) is \( 2x \). 2. For \( e^{-\frac{x^2}{a^2}} \), we use the chain rule: \[ \frac{d}{dx}\left(e^{-\frac{x^2}{a^2}}\right) = e^{-\frac{x^2}{a^2}} \cdot \left(-\frac{2x}{a^2}\right) \] Putting it all together: \[ f'(x) = 2x e^{-\frac{x^2}{a^2}} + x^2 \left(-\frac{2x}{a^2} e^{-\frac{x^2}{a^2}}\right) \] \[ = e^{-\frac{x^2}{a^2}} \left(2x - \frac{2x^3}{a^2}\right) \] \[ = 2x e^{-\frac{x^2}{a^2}} \left(1 - \frac{x^2}{a^2}\right) \] ### Step 2: Set the derivative greater than or equal to zero For the function to be increasing, we need: \[ f'(x) \geq 0 \] This gives us: \[ 2x e^{-\frac{x^2}{a^2}} \left(1 - \frac{x^2}{a^2}\right) \geq 0 \] ### Step 3: Analyze the factors 1. \( e^{-\frac{x^2}{a^2}} > 0 \) for all \( x \). 2. \( 2x \geq 0 \) implies \( x \geq 0 \). 3. \( 1 - \frac{x^2}{a^2} \geq 0 \) implies \( x^2 \leq a^2 \) or \( -a \leq x \leq a \). ### Step 4: Combine the conditions From \( 2x \geq 0 \), we have \( x \geq 0 \). From \( 1 - \frac{x^2}{a^2} \geq 0 \), we have \( x \leq a \). Thus, combining these conditions, we find: \[ 0 \leq x \leq a \] ### Step 5: Final intervals Since \( x \) must also satisfy \( x \geq 0 \), the function \( f(x) \) is increasing in the intervals: \[ (-\infty, -a] \cup [0, a] \] ### Conclusion The intervals where the function \( f(x) \) is increasing are: \[ (-\infty, -a] \cup [0, a] \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment Objective (level-2)|20 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Comprehension|8 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment subjective (level -2)|15 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)-6x^(2)+9x+3 is a strictly increasing function ,then x lies in :

The function f(x)=x^3-3x^2-24x+5 is an increasing function in the interval

The function f(x) = x^2 is increasing in the interval

The function f(x)=x/(xlogx) increase on the interval

If f(x)=(x)/(2)+(2)/(x) for -7<=x<=7, then f(x) is monotonic increasing function of x in the interval-

The function f(x)=2x^(3)-15x^(2)+36x+1 is increasing in the interval

f(x)=tan^(-1)(sinx+cosx), x gt0 is always and increasing function on the interval

The function f(x)= (x^(2))/(e^(x)) monotonically increasing if

The function log (1+x) - (2x)/(x+2) is increasing in the interval:

FIITJEE-APPLICATION OF DERIVATIVE-Assignment Objective (level-1)
  1. If f(x) = 1+ x/(1!) + x^(2)/(2!)+ x^(3)/(3!) + ------ + x^(n)/(n!) the...

    Text Solution

    |

  2. If a,b,c are positive constants such that agtb then the maximum value...

    Text Solution

    |

  3. If f(x) = x^(2) e^(-x^(2)/a^(2) is an increasing function then (for a ...

    Text Solution

    |

  4. Let f(x) = |x-1| + |x-2| + |x-3| + |x-4| AA x in R. Then

    Text Solution

    |

  5. Let P(x) be a polynomial of degree n with real coefficients and is non...

    Text Solution

    |

  6. Let p = 144 ^(sin^(2)x) + 144^( cos^(2)x), then the number of integra...

    Text Solution

    |

  7. Cosine of the angle of intersection of curves y = 3^(x-1) logx and y= ...

    Text Solution

    |

  8. The equation of curve passing through (1,1) in which the subtangent is...

    Text Solution

    |

  9. In the interval [0,1], the function x^(25)(1-x)^(75) takes its maximum...

    Text Solution

    |

  10. f:R rarr R,f(x) is differentiable such that ff((x))=k(x^(5)+x).(kne0) ...

    Text Solution

    |

  11. f:R rarr R,f(x) is differentiable such that f(x)=k(x^(5)+x).(kne0) The...

    Text Solution

    |

  12. If g(x) is a curve which is obtained by the reflection of f(x) = (e^x...

    Text Solution

    |

  13. If the curves x^(2)/a^(2)+ y^(2)/4 = 1 and y^(3) = 16x intersect at r...

    Text Solution

    |

  14. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  15. The function in which Rolle's theorem is verified is:

    Text Solution

    |

  16. f(x)={:{(max g(t), 0let le x , 0le x lepi/2),(min g(t) , xlet lt 0, -p...

    Text Solution

    |

  17. If f''(x)+f'(x)+f^(2)(x)=x^(2) be the differentiable equation of a cur...

    Text Solution

    |

  18. The maximum value of the function f(x)=((1+x)^(0. 6))/(1+x^(0. 6)) in ...

    Text Solution

    |

  19. A is a set containing n(1) elements and B is another set containing n(...

    Text Solution

    |

  20. Let A be the point where the curve 5 alpha ^(2) x ^(3) +10 alpha x ^(2...

    Text Solution

    |