Home
Class 12
MATHS
For the function f(x) = cos^(-1)x + cos ...

For the function `f(x) = cos^(-1)x + cos ^(-1) x^(2)` which of the following statements is/are true

A

f(x) is always decreasing

B

f(x) is decreasing in [0,1] and increasing in [-1, 0]

C

f(x) has only one local maxima

D

f(x) has only one local minima

Text Solution

AI Generated Solution

The correct Answer is:
To analyze the function \( f(x) = \cos^{-1}(x) + \cos^{-1}(x^2) \) and determine the intervals where it is increasing or decreasing, we will follow these steps: ### Step 1: Find the derivative of the function To determine where the function is increasing or decreasing, we first need to find its derivative \( f'(x) \). The derivative of \( f(x) \) is given by: \[ f'(x) = \frac{d}{dx}(\cos^{-1}(x)) + \frac{d}{dx}(\cos^{-1}(x^2)) \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1 - x^2}} \] For \( \cos^{-1}(x^2) \), we apply the chain rule: \[ \frac{d}{dx}(\cos^{-1}(x^2)) = -\frac{2x}{\sqrt{1 - (x^2)^2}} = -\frac{2x}{\sqrt{1 - x^4}} \] Thus, the derivative can be combined as follows: \[ f'(x) = -\frac{1}{\sqrt{1 - x^2}} - \frac{2x}{\sqrt{1 - x^4}} \] ### Step 2: Set the derivative to zero To find the critical points, we set \( f'(x) = 0 \): \[ -\frac{1}{\sqrt{1 - x^2}} - \frac{2x}{\sqrt{1 - x^4}} = 0 \] This simplifies to: \[ \frac{1}{\sqrt{1 - x^2}} = -\frac{2x}{\sqrt{1 - x^4}} \] ### Step 3: Analyze the critical points Next, we need to find the values of \( x \) where this equation holds true. Squaring both sides gives: \[ \frac{1}{1 - x^2} = \frac{4x^2}{1 - x^4} \] Cross-multiplying leads to: \[ 1 - x^4 = 4x^2(1 - x^2) \] Rearranging gives: \[ 1 - x^4 = 4x^2 - 4x^4 \] Combining like terms results in: \[ 3x^4 - 4x^2 + 1 = 0 \] Let \( y = x^2 \). The equation becomes: \[ 3y^2 - 4y + 1 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{4 \pm \sqrt{16 - 12}}{6} = \frac{4 \pm 2}{6} \] This gives: \[ y = 1 \quad \text{or} \quad y = \frac{1}{3} \] Converting back to \( x \): \[ x^2 = 1 \Rightarrow x = 1 \quad \text{or} \quad x = -1 \] \[ x^2 = \frac{1}{3} \Rightarrow x = \frac{1}{\sqrt{3}} \quad \text{or} \quad x = -\frac{1}{\sqrt{3}} \] ### Step 5: Determine intervals of increase and decrease We analyze the sign of \( f'(x) \) in the intervals determined by the critical points \( -1, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 1 \). 1. **Interval \( (-\infty, -1) \)**: Choose \( x = -2 \) - \( f'(-2) < 0 \) (decreasing) 2. **Interval \( (-1, -\frac{1}{\sqrt{3}}) \)**: Choose \( x = -0.5 \) - \( f'(-0.5) > 0 \) (increasing) 3. **Interval \( (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \)**: Choose \( x = 0 \) - \( f'(0) < 0 \) (decreasing) 4. **Interval \( (\frac{1}{\sqrt{3}}, 1) \)**: Choose \( x = 0.9 \) - \( f'(0.9) < 0 \) (decreasing) 5. **Interval \( (1, \infty) \)**: Choose \( x = 2 \) - \( f'(2) < 0 \) (decreasing) ### Conclusion The function \( f(x) \) is: - Increasing on \( (-1, -\frac{1}{\sqrt{3}}) \) - Decreasing on \( (-\infty, -1) \), \( (-\frac{1}{\sqrt{3}}, 1) \), and \( (1, \infty) \) ### Summary of Statements 1. The function is always decreasing: **False** 2. The function is decreasing in \( (0, 1) \) and increasing in \( (-1, 0) \): **False** 3. The function has only one local maxima and one local minima: **True** 4. The function has only one local minima at \( x = -\frac{1}{\sqrt{3}} \): **True**
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment Objective (level-2)|20 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Comprehension|8 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment subjective (level -2)|15 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos

Similar Questions

Explore conceptually related problems

The function,f(x)=cos^(-1)(cos x) is

Let f(x)=sin^(-1)x and g(x)=cos^(-1)x , then which of the following statements are correct?

For the function f(x)=x "cos" 1/x, x ge1

For the function f(x)=x cos((1)/(x)),x>=1

For tha function f(x)=(pi-x)(cos x)/(|sin x|);x!=pi and f(pi)=1 which of the following statement is/are true:

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is

Let f(x)=sqrt((cos^(-1)sqrt(1-x^(2))-sin^(-1)x)) then which of the following statement/s is are correct -

FIITJEE-APPLICATION OF DERIVATIVE-Assignment Objective (level-1)
  1. For the curve x^(2)y^(3) = c (where c is a constant), the portion of t...

    Text Solution

    |

  2. Which of the following statements is not true about f(x) = 1+x+ x^(2)/...

    Text Solution

    |

  3. The set of all values a for which f(x) = (a^(2) - 3a+2)(cosx/2)+(a-1)x...

    Text Solution

    |

  4. If f: RvecRa n dg: RvecR are two functions such that f(x)+f^(x)=-xg(x)...

    Text Solution

    |

  5. The largest possible value of the expression f(n) = sinx(1) cosx(2) + ...

    Text Solution

    |

  6. A function g(theta ) = int(0)^(sin^(2)theta) f(x)dx + int(0)^(cos^(2...

    Text Solution

    |

  7. The functio f(x)=tanx+(1)/(x), AA x in (0, (pi)/(2)) has

    Text Solution

    |

  8. The function f(x) = min {|x|, sqrt(1-x^(2))}, -1lt x lt 1 possesses

    Text Solution

    |

  9. If a, b, c, d, e and f are non negative real numbers such that a +b+...

    Text Solution

    |

  10. For the function f(x) = cos^(-1)x + cos ^(-1) x^(2) which of the follo...

    Text Solution

    |

  11. The greatest value of ax + by, when x and y are positive and x^(2)+ y ...

    Text Solution

    |

  12. If x + y=4 and x >=0, y>= 0 find the maximum value of x^3y.

    Text Solution

    |

  13. Find the minimum value of (x1-x2)^2+((x1^2)/20-sqrt((17-x2)(x2-13)))^...

    Text Solution

    |

  14. Let a ,b , c in R such that no two of them are equal and satisfy |2a ...

    Text Solution

    |

  15. If the function y= sin(f(x)) is monotonic for all values of x [ where ...

    Text Solution

    |

  16. If f(x)= |sin x + 2/(3+sin x)+b| and f(b) denote the maximum of the f...

    Text Solution

    |

  17. Maximum value of (sqrt(-3+4x-x^2)+4)^2+(x-5)^2 (where 1 le x le 3) is

    Text Solution

    |

  18. For what values of a does the curve f(x)=x(a^2-2a-2)+cosx is always st...

    Text Solution

    |

  19. Statement 1: The function f(x) = |x-a(1)| + |x - a(2)|+ ...+|x-a(2n-1)...

    Text Solution

    |

  20. Statement 1: pi^(4) gt 4^(pi) because Statement 2 : The function y...

    Text Solution

    |