Home
Class 12
MATHS
The function f(x) = x^(2) + gamma / x h...

The function `f(x) = x^(2) + gamma / x ` has a

A

minimum at x = 2 if `gamma = 16`

B

maximum at x = 2 if `gamma = 16`

C

maximum for no real value of `gamma`

D

point of inflection at `x= 1 if gamma = -1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the function \( f(x) = x^2 + \frac{\gamma}{x} \) to determine its maxima, minima, and points of inflection. ### Step 1: Find the first derivative We start by differentiating the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(x^2) + \frac{d}{dx}\left(\frac{\gamma}{x}\right) \] Using the power rule and the quotient rule, we get: \[ f'(x) = 2x - \frac{\gamma}{x^2} \] ### Step 2: Set the first derivative to zero To find the critical points, we set the first derivative equal to zero: \[ 2x - \frac{\gamma}{x^2} = 0 \] Rearranging gives: \[ 2x = \frac{\gamma}{x^2} \] Multiplying both sides by \( x^2 \) yields: \[ 2x^3 = \gamma \] Thus, we find: \[ x^3 = \frac{\gamma}{2} \quad \Rightarrow \quad x = \sqrt[3]{\frac{\gamma}{2}} \] ### Step 3: Find the second derivative Next, we find the second derivative to determine the nature of the critical points: \[ f''(x) = \frac{d}{dx}(2x - \frac{\gamma}{x^2}) = 2 + \frac{2\gamma}{x^3} \] ### Step 4: Analyze the second derivative Now, we evaluate the second derivative at the critical point \( x = \sqrt[3]{\frac{\gamma}{2}} \): \[ f''\left(\sqrt[3]{\frac{\gamma}{2}}\right) = 2 + \frac{2\gamma}{\left(\sqrt[3]{\frac{\gamma}{2}}\right)^3} \] Since \( \left(\sqrt[3]{\frac{\gamma}{2}}\right)^3 = \frac{\gamma}{2} \), we have: \[ f''\left(\sqrt[3]{\frac{\gamma}{2}}\right) = 2 + \frac{2\gamma}{\frac{\gamma}{2}} = 2 + 4 = 6 \] Since \( f''\left(\sqrt[3]{\frac{\gamma}{2}}\right) > 0 \), the critical point is a minimum. ### Step 5: Find the minimum value Now, we substitute \( x = \sqrt[3]{\frac{\gamma}{2}} \) back into the original function to find the minimum value: \[ f\left(\sqrt[3]{\frac{\gamma}{2}}\right) = \left(\sqrt[3]{\frac{\gamma}{2}}\right)^2 + \frac{\gamma}{\sqrt[3]{\frac{\gamma}{2}}} \] Calculating this gives: \[ = \frac{\gamma^{2/3}}{2^{2/3}} + \frac{\gamma \cdot 2^{1/3}}{\gamma^{1/3}} = \frac{\gamma^{2/3}}{2^{2/3}} + 2^{1/3} \gamma^{2/3} = \gamma^{2/3}\left(\frac{1}{2^{2/3}} + 2^{1/3}\right) \] ### Step 6: Determine points of inflection To find points of inflection, we set the first derivative equal to zero: \[ f'(x) = 2x - \frac{\gamma}{x^2} = 0 \Rightarrow 2x^3 = \gamma \Rightarrow x^3 = \frac{\gamma}{2} \] ### Conclusion 1. The function has a minimum at \( x = \sqrt[3]{\frac{\gamma}{2}} \). 2. The minimum value is \( f\left(\sqrt[3]{\frac{\gamma}{2}}\right) = \gamma^{2/3}\left(\frac{1}{2^{2/3}} + 2^{1/3}\right) \). 3. There are no maximum points for real values of \( x \). 4. The point of inflection occurs at \( x = \sqrt[3]{\frac{\gamma}{2}} \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Comprehension|8 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise MATCH THE COLUMNS|4 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise Assignment Objective (level-1)|52 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=x^(x) has

The function f(x) = xe^(-x) has

The function f(x) = 2x - |x|

If the function f(x) = x^(2) + alpha//x has a local minimum at x=2, then the value of alpha is

The function f(x)=x^(2)-x+1 is :

The function f(x)=x-|x-x^(2)| is

The function f(x) = 2x 3^(2/3) , x in , has

The function f(x)=x+sinx has

FIITJEE-APPLICATION OF DERIVATIVE-Assignment Objective (level-2)
  1. If the equation x^(5) - 10 a^(3)x^(2) + b^(4)x + c ^(5) = 0 has three...

    Text Solution

    |

  2. A tangent drawn to the curve y=f(x) at P(x,y) cuts the x-axis and y-ax...

    Text Solution

    |

  3. The function f(x) = x^(2) + gamma / x has a

    Text Solution

    |

  4. If x = 1/2 and if (1-2x)/ (1-x+ x^(2)) + (2x-4x^(3))/ (1-x^(2) + x^(4)...

    Text Solution

    |

  5. Let f(x)=(x^(2)+)1)/([x]),1 lt x le 3.9.[.] denotes the greatest integ...

    Text Solution

    |

  6. Which of the following are / is true

    Text Solution

    |

  7. If f: R rightarrow R, f(x) is a differentiable bijective function , th...

    Text Solution

    |

  8. Let f(x) = x^(3) - 6x^(2) + 15x + 3. Then

    Text Solution

    |

  9. Let f(x) be a nonzero function whose all successive derivative exist ...

    Text Solution

    |

  10. The function f(x) = tan ^(-1)x -x decreases in the interval

    Text Solution

    |

  11. f(x) = e^(sinx+cosx) is an increasing function in

    Text Solution

    |

  12. Which of the following statements are true where phi(x) is a polynomi...

    Text Solution

    |

  13. The function f(x)=2log(x-2)-x^2+4x+1 increases in the interval

    Text Solution

    |

  14. Which of the following is/are true, (you may use f(x) = In(In x)/(Inx)

    Text Solution

    |

  15. If f(x) is continuous function , then

    Text Solution

    |

  16. If f(x) = (tan^-1 x)^2+2/(sqrt(x^2+1) then f is increasing in

    Text Solution

    |

  17. h(x)=3f((x^2)/3)+f(3-x^2)AAx in (-3, 4) where f''(x)> 0 AA x in (-3,4)...

    Text Solution

    |

  18. If f(x)=overset(x)underset(0)int(sint)/(t)dt,xgt0, then

    Text Solution

    |

  19. Let f(x) = 5x tanx + 8 sin(tan x) + In(cos x) then in the interval (-...

    Text Solution

    |

  20. If thetain[-(pi)/9,-(pi)/(36)] such that f(theta)=tan(theta+(5pi)/(18)...

    Text Solution

    |