Home
Class 12
MATHS
Evaluate: int(2)^(6)(2x+3)dx....

Evaluate: `int_(2)^(6)(2x+3)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{2}^{6} (2x + 3) \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ \int_{2}^{6} (2x + 3) \, dx \] ### Step 2: Integrate the function To integrate \( 2x + 3 \), we can break it down into two parts: 1. The integral of \( 2x \) 2. The integral of \( 3 \) The integral of \( 2x \) is: \[ \int 2x \, dx = 2 \cdot \frac{x^2}{2} = x^2 \] The integral of \( 3 \) is: \[ \int 3 \, dx = 3x \] Thus, the integral of \( 2x + 3 \) is: \[ \int (2x + 3) \, dx = x^2 + 3x + C \] where \( C \) is the constant of integration. ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from \( 2 \) to \( 6 \): \[ \left[ x^2 + 3x \right]_{2}^{6} \] Calculating at the upper limit \( x = 6 \): \[ 6^2 + 3 \cdot 6 = 36 + 18 = 54 \] Calculating at the lower limit \( x = 2 \): \[ 2^2 + 3 \cdot 2 = 4 + 6 = 10 \] ### Step 4: Subtract the lower limit from the upper limit Now we subtract the value at the lower limit from the value at the upper limit: \[ 54 - 10 = 44 \] ### Final Answer Thus, the value of the integral \( \int_{2}^{6} (2x + 3) \, dx \) is: \[ \boxed{44} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|29 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(2)^(3)(1)/(x)dx

Evaluate int_(3)^(2)(x^2-3x)dx

Evaluate: int_(0)^(3) x^(2) dx

Evaluate: int_(-2)^2 (x^3+x)dx

Evaluate int_(0)^(2)(2-3x)^3dx

int_(1)^(6)(3x-2)dx

Evaluate int_(2)^(3)3^(x)dx

Evaluate int_(2)^(3)3^(x)dx

Evaluate int_(0)^(2)(3x-4)^6dx

Evaluate : int_(-6)^(3)|x+3|dx