Home
Class 12
MATHS
Find the value of int(0)^(oo)(xlogx)/((1...

Find the value of `int_(0)^(oo)(xlogx)/((1+x^(2))^(2))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\infty} \frac{x \log x}{(1+x^2)^2} \, dx \), we will use a substitution and properties of logarithms to simplify the expression. ### Step 1: Substitution Let \( x = \frac{1}{t} \). Then, as \( x \) goes from \( 0 \) to \( \infty \), \( t \) goes from \( \infty \) to \( 0 \). The differential \( dx \) can be computed as follows: \[ dx = -\frac{1}{t^2} \, dt \] ### Step 2: Change the limits and rewrite the integral Substituting \( x \) and \( dx \) into the integral, we have: \[ I = \int_{\infty}^{0} \frac{\frac{1}{t} \log \left( \frac{1}{t} \right)}{\left( 1 + \left( \frac{1}{t} \right)^2 \right)^2} \left( -\frac{1}{t^2} \right) dt \] This simplifies to: \[ I = \int_{0}^{\infty} \frac{\frac{1}{t} (-\log t)}{\left( 1 + \frac{1}{t^2} \right)^2} \frac{1}{t^2} dt \] ### Step 3: Simplify the expression Now simplifying the denominator: \[ 1 + \frac{1}{t^2} = \frac{t^2 + 1}{t^2} \] Thus, \[ \left( 1 + \frac{1}{t^2} \right)^2 = \left( \frac{t^2 + 1}{t^2} \right)^2 = \frac{(t^2 + 1)^2}{t^4} \] Now substituting this back into the integral: \[ I = \int_{0}^{\infty} \frac{-\log t}{t^3} \cdot \frac{t^4}{(t^2 + 1)^2} dt = \int_{0}^{\infty} \frac{-t \log t}{(t^2 + 1)^2} dt \] ### Step 4: Combine the integrals Now we have: \[ I = -\int_{0}^{\infty} \frac{t \log t}{(t^2 + 1)^2} dt \] We can denote this integral as \( J \): \[ J = \int_{0}^{\infty} \frac{t \log t}{(t^2 + 1)^2} dt \] Thus, we can express \( I \) as: \[ I = -J \] ### Step 5: Adding the two integrals Now, we can observe that: \[ I + J = 0 \implies 2I = 0 \implies I = 0 \] ### Conclusion Thus, the value of the integral is: \[ \int_0^{\infty} \frac{x \log x}{(1+x^2)^2} \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|29 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

Find the value of int_(0)^(1)x^(2)dx

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

int_(0)^(oo)(dx)/((1+x^(2))^(4))=

Let A=int_(0)^(oo)(log x)/(1+x^(3))dx Then find the value of int_(0)^(oo)(x log x)/(1+x^(3))dx in terms of A

The value of int_(0)^(oo)(x)/((1+x)(x^(2)+1))dx is

I=int_(0)^(oo)(x)/((x^(2)+a^(2))^(2))dx

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

The value of int_(0)^(oo) (dx)/((x^(2)+4)(x^(2)+9) ) is