Home
Class 12
MATHS
Evaluate int(0)^(pi)min{|tanx|,|(4)/(pi)...

Evaluate `int_(0)^(pi)min{|tanx|,|(4)/(pi)x-2|}dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_0^{\pi} \min\{|\tan x|, |(4/\pi)x - 2|\} \, dx \), we need to analyze the two functions involved: \( |\tan x| \) and \( |(4/\pi)x - 2| \). ### Step 1: Analyze the Functions 1. **Function \( |\tan x| \)**: - The function \( \tan x \) is positive in the interval \( (0, \frac{\pi}{2}) \) and becomes undefined at \( x = \frac{\pi}{2} \). Therefore, \( |\tan x| = \tan x \) for \( x \in (0, \frac{\pi}{2}) \) and \( |\tan x| \) is negative for \( x \in (\frac{\pi}{2}, \pi) \) but we consider the absolute value. - As \( x \) approaches \( \frac{\pi}{2} \), \( |\tan x| \) approaches infinity. 2. **Function \( |(4/\pi)x - 2| \)**: - This is a linear function that crosses the x-axis at \( x = \frac{\pi}{2} \). - For \( x < \frac{\pi}{2} \), \( |(4/\pi)x - 2| = 2 - (4/\pi)x \). - For \( x > \frac{\pi}{2} \), \( |(4/\pi)x - 2| = (4/\pi)x - 2 \). ### Step 2: Find Intersection Points To find where \( |\tan x| = |(4/\pi)x - 2| \), we need to solve: 1. \( \tan x = 2 - \frac{4}{\pi}x \) for \( x \in [0, \frac{\pi}{2}) \) 2. \( \tan x = \frac{4}{\pi}x - 2 \) for \( x \in (\frac{\pi}{2}, \pi] \) ### Step 3: Evaluate the Integral We will split the integral into three parts based on the intersection points found above, which we denote as \( a \) and \( b \): 1. From \( 0 \) to \( a \): \( \int_0^a \tan x \, dx \) 2. From \( a \) to \( b \): \( \int_a^b \left(2 - \frac{4}{\pi}x\right) \, dx \) 3. From \( b \) to \( \pi \): \( \int_b^{\pi} \tan x \, dx \) ### Step 4: Calculate Each Integral 1. **Integral from \( 0 \) to \( a \)**: \[ \int_0^a \tan x \, dx = -\ln|\cos x| \bigg|_0^a = -\ln|\cos a| + \ln(1) = -\ln|\cos a| \] 2. **Integral from \( a \) to \( b \)**: \[ \int_a^b \left(2 - \frac{4}{\pi}x\right) \, dx = \left[2x - \frac{4}{\pi} \frac{x^2}{2}\right]_a^b = \left(2b - \frac{2}{\pi}b^2\right) - \left(2a - \frac{2}{\pi}a^2\right) \] 3. **Integral from \( b \) to \( \pi \)**: \[ \int_b^{\pi} \tan x \, dx = -\ln|\cos x| \bigg|_b^{\pi} = -\ln(0) + \ln|\cos b| = \infty - \ln|\cos b| \text{ (noting that } \cos(\pi) = -1\text{)} \] ### Step 5: Combine Results Combine the results of the three integrals to get the final answer. ### Final Answer The final value of the integral \( \int_0^{\pi} \min\{|\tan x|, |(4/\pi)x - 2|\} \, dx \) is: \[ 2 \ln(\sqrt{2}) + \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|29 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi//4)In(1+tanx)dx

Evaluate int_(0)^(4pi)|cos x| dx .

Evaluate : int_(0)^(pi) |cos x| dx

Evaluate int_0^(pi/4) secx tanx dx

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

Evaluate int_(0)^((pi)/(4))log(1+tan x)dx

Evaluate : int_(0)^((pi)/(4)) sec^(2) x dx

Evaluate :int_(0)^( pi)e^(2x)*sin((pi)/(4)+x)dx

Evaluate :int_(0)^((pi)/(4))log(1+tan x)dx

Evaluate: int_(0)^((pi)/(4)) sec^(4) x dx