Home
Class 12
MATHS
Find the value of integral int(0)^(t)int...

Find the value of integral `int_(0)^(t)int(|cos2x|+|sin2x|)dx,"where "npilttlt(npi+(pi)/(4))`.

Text Solution

Verified by Experts

The correct Answer is:
`(2)/(pi)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|29 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(a)^(a+pi/2)(|sin x|+|cos x|)dx, is

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

Evaluate: int_(0)^(n pi+t)(|cos x|+|sin x|)dx, where t in[0,f[(pi)/(2))

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

The value of the integral int_(0) ^(pi) cos 2 x log _(e) sin x dx is