Home
Class 12
MATHS
Evaluate int(4)^(6)([x^(2)])/([x^(2)-2...

Evaluate
`int_(4)^(6)([x^(2)])/([x^(2)-20x+100]+[x^(2)])dx`
where [.] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{4}^{6} \frac{\lfloor x^2 \rfloor}{\lfloor x^2 - 20x + 100 \rfloor + \lfloor x^2 \rfloor} \, dx, \] we will follow these steps: ### Step 1: Simplify the expression in the integral First, we simplify the expression in the denominator: \[ x^2 - 20x + 100 = (x - 10)^2. \] Thus, we can rewrite the integral as: \[ I = \int_{4}^{6} \frac{\lfloor x^2 \rfloor}{\lfloor (x - 10)^2 \rfloor + \lfloor x^2 \rfloor} \, dx. \] ### Step 2: Evaluate the greatest integer function Next, we need to evaluate the values of \(\lfloor x^2 \rfloor\) and \(\lfloor (x - 10)^2 \rfloor\) for \(x\) in the interval \([4, 6]\). - For \(x = 4\): \[ \lfloor 4^2 \rfloor = \lfloor 16 \rfloor = 16, \] \[ \lfloor (4 - 10)^2 \rfloor = \lfloor (-6)^2 \rfloor = \lfloor 36 \rfloor = 36. \] - For \(x = 5\): \[ \lfloor 5^2 \rfloor = \lfloor 25 \rfloor = 25, \] \[ \lfloor (5 - 10)^2 \rfloor = \lfloor (-5)^2 \rfloor = \lfloor 25 \rfloor = 25. \] - For \(x = 6\): \[ \lfloor 6^2 \rfloor = \lfloor 36 \rfloor = 36, \] \[ \lfloor (6 - 10)^2 \rfloor = \lfloor (-4)^2 \rfloor = \lfloor 16 \rfloor = 16. \] ### Step 3: Determine the ranges for \(\lfloor x^2 \rfloor\) and \(\lfloor (x - 10)^2 \rfloor\) From the calculations: - For \(x \in [4, 5)\): \(\lfloor x^2 \rfloor = 16\) and \(\lfloor (x - 10)^2 \rfloor = 36\). - For \(x \in [5, 6)\): \(\lfloor x^2 \rfloor = 25\) and \(\lfloor (x - 10)^2 \rfloor = 25\). ### Step 4: Break the integral into two parts We can now break the integral into two parts: \[ I = \int_{4}^{5} \frac{16}{36 + 16} \, dx + \int_{5}^{6} \frac{25}{25 + 25} \, dx. \] ### Step 5: Evaluate each part 1. For the first integral: \[ I_1 = \int_{4}^{5} \frac{16}{52} \, dx = \int_{4}^{5} \frac{4}{13} \, dx = \frac{4}{13} \cdot (5 - 4) = \frac{4}{13}. \] 2. For the second integral: \[ I_2 = \int_{5}^{6} \frac{25}{50} \, dx = \int_{5}^{6} \frac{1}{2} \, dx = \frac{1}{2} \cdot (6 - 5) = \frac{1}{2}. \] ### Step 6: Combine the results Now, we combine both results: \[ I = I_1 + I_2 = \frac{4}{13} + \frac{1}{2}. \] To add these fractions, find a common denominator: \[ \frac{1}{2} = \frac{13}{26} \quad \text{and} \quad \frac{4}{13} = \frac{8}{26}. \] Thus, \[ I = \frac{8}{26} + \frac{13}{26} = \frac{21}{26}. \] ### Final Answer The value of the integral is \[ \boxed{\frac{21}{26}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-I)|13 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-II)|10 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 4:|4 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

The value of int_(1)^(2)(x^([x^(2)])+[x^(2)]^(x))dx, where [.] denotes the greatest integer function,is equal to

int_(0)^(4)x [x] dx= ( where [.] denotes greatest integer function

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

int_(1)^(2)([x^(2)]-[x]^(2))dx where [.] ldenotes the greatest integer function is equal to

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.