Home
Class 12
MATHS
Area of the triangle formed by the three...

Area of the triangle formed by the threepoints `'t_1'. 't_2' and 't_3'` on `y^2=4ax` is `K|(t_1-t_2) (t_2-t_3)(t_3-t_1)|` then `K=`

Text Solution

Verified by Experts

The correct Answer is:
`t_(1)+t_(2)+t_(3)`
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL - II)|15 Videos
  • PARABOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL - I)|50 Videos
  • PARABOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL - I)|10 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • PERMUTATIONS & COMBINATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Area of the triangle formed by the threepoints 't_(1)^(prime)*'t_(2)^(prime) and 't_(3)^(prime) on y^(2)=4ax is K|(t_(1)-t_(2))(t_(2)-t_(3))(t_(3)-t_(1))| then K=

If the orthocentre of the triangle formed by the points t_1,t_2,t_3 on the parabola y^2=4ax is the focus, the value of |t_1t_2+t_2t_3+t_3t_1| is

Show that the area formed by the normals to y^2=4ax at the points t_1,t_2,t_3 is

If the tangents at t_(1) and t_(2) to a parabola y^2=4ax are perpendicular then (t_(1)+t_(2))^(2)-(t_(1)-t_(2))^(2) =

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)], [a t_2t_3,a(t_2 +t_3)], [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3)+at_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

Normals are drawn to the parabola y^(2)=4ax at the points A,B,C whose parameters are t_(1),t_(2) and t_(3) ,respectively.If these normals enclose a triangle PQR,then prove that its area is (a^(2))/(2)(t-t_(2))(t_(2)-t_(3))(t_(3)-t_(1))(t_(1)+t_(2)+t_(3))^(2) Also prove that Delta PQR=Delta ABC(t_(1)+t_(2)+t_(3))^(2)

If a circle and the rectangular hyperbola xy = c^(2) meet in four points 't'_(1) , 't'_(2) , 't'_(3) " and " 't'_(4) then prove that t_(1) t_(2) t_(3) t_(4) = 1 .

Prove that the area of the triangle whose vertices are : (at_(1)^(2),2at_(1)) , (at_(2)^(2),2at_(2)) , (at_(3)^(2),2at_(3)) is a^(2)(t_(1)-t_(2))(t_(2)-t_(3))(t_(3)-t_(1)) .