Home
Class 12
MATHS
Tangent to the curve y=x^(2)+6 at a poin...

Tangent to the curve `y=x^(2)+6` at a point P(1, 7) touches the circle `x^(2)+y^(2)+16x+12y+c=0` at a point Q. Then the coordinates of Q are

A

`(-6,-11)`

B

`(-9,-13)`

C

`(-10,-15)`

D

`(-6,-7)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL - II)|20 Videos
  • PARABOLA

    FIITJEE|Exercise COMPREHENSIONS|9 Videos
  • PARABOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL - II)|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • PERMUTATIONS & COMBINATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Tangent to the curve y=x^(2)+6 at a point (1,7) touches the circle x^(2)+y^(2)+16x+12y+c=0 at a point Q, then the coordinates of Q are (A)(-6,-11) (B) (-9,-13)(C)(-10,-15)(D)(-6,-7)

S straight line with slope 2 and y-intercept 5 touches the circle x^(2)+y^(2)=16x+12y+c=0 at a point Q Then the coordinates of Q are (-6,11)(b)(-9,-13)(-10,-15)(d)(-6,-7)

A straight line with slope 2 and y-intercept 5 touches the circle x^(2)+y^(2)+16x+12y+c=0 at a point Q. Then the coordinates of Q are (-6,11)(b)(-9,-13)(-10,-15)(d)(-6,-7)

The tangent to the parabola y=x^(2)-2x+8 at P(2, 8) touches the circle x^(2)+y^(2)+18x+14y+lambda=0 at Q. The coordinates of point Q are

A line with gradient 2 is passing through the point P(1,7) and touches the circle x^(2)+y^(2)+16x+12y+c=0 at the point Q. If (a,b) are the coordinates of the point Q. then find the value of (7a+7b+c)

A line with gradient 2 is passing through the point P(1,7) and touches the circle x^(2)+y^(2)+16x+12y+c=0 at the point Q If (a,b) are the coordinates of the point Q then find the value of (7a+7b+c)

The tangent to the circle x^(2)+y^(2)=5 at the point (1, -2) also touches the circle x^(2)+y^(2)-8x+6y+20=0 at the point

FIITJEE-PARABOLA-ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL - I)
  1. The normals at three points P,Q,R of the parabola y^2=4ax meet in (h,k...

    Text Solution

    |

  2. The parabola y^2 = 4x and the circle (x-6)^2 + y^2 = r^2 will have no...

    Text Solution

    |

  3. The normal at the point P(ap^2, 2ap) meets the parabola y^2= 4ax again...

    Text Solution

    |

  4. If one end of the diameter of a circle is (3, 4) which touches the x-a...

    Text Solution

    |

  5. The point on the parabola y^(2)=8x whose distance from the focus is 8 ...

    Text Solution

    |

  6. Centre of locus of point of intersection of tangent to y^2 = 4ax, if t...

    Text Solution

    |

  7. Two parabolas y^(2)=4a(x-lamda(1))andx^(2)=4a(y-lamda(2)) always touch...

    Text Solution

    |

  8. Tangent to the curve y=x^(2)+6 at a point P(1, 7) touches the circle x...

    Text Solution

    |

  9. The locus of the midpoint of the segment joining the focus to a moving...

    Text Solution

    |

  10. Parabolas (y-alpha)^(2)=4a(x-beta)and(y-alpha)^(2)=4a'(x-beta') will h...

    Text Solution

    |

  11. If the normals at the end points of a variable chord PQ of the parabol...

    Text Solution

    |

  12. If the chord of contact of tangents from a point P(h, k) to the circle...

    Text Solution

    |

  13. The axis of a parabola is along the line y = x and the distance of its...

    Text Solution

    |

  14. If normal are drawn from a point P(h , k) to the parabola y^2=4a x , t...

    Text Solution

    |

  15. The equation of the line of the shortest distance between the parabola...

    Text Solution

    |

  16. The exhaustive set of values of k for which tangents drawn from the po...

    Text Solution

    |

  17. The locus of the point (sqrt(3h),sqrt(sqrt(3)k+2)) if it lies on the l...

    Text Solution

    |

  18. In a parabola y^(2)=4ax, two points P and Q are taken such that the ta...

    Text Solution

    |

  19. Statement - 1: The equation of common tangent to the parabola y^(2)=4x...

    Text Solution

    |

  20. Statement - 1: The focal chord to the parabola y^(2)=8x of length 7 un...

    Text Solution

    |