Home
Class 12
MATHS
Let (5 tan theta , 3 sec theta) be a poi...

Let `(5 tan theta , 3 sec theta)` be a point on the hyperbola for all values of `theta ne (2n + 1) pi/2` , then find the eccentricity of the hyperbola is

A

`5/3`

B

`sqrt(5/3)`

C

`sqrt(34/9)`

D

`9/sqrt13`

Text Solution

AI Generated Solution

The correct Answer is:
To find the eccentricity of the hyperbola given the point \((5 \tan \theta, 3 \sec \theta)\), we can follow these steps: ### Step 1: Identify the standard form of the hyperbola The standard form of a hyperbola can be expressed as: \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] For a vertical hyperbola, the equation is: \[ \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \] ### Step 2: Substitute the given point into the hyperbola equation Given the point \((5 \tan \theta, 3 \sec \theta)\), we can identify: - \(x = 5 \tan \theta\) - \(y = 3 \sec \theta\) ### Step 3: Express \(x\) and \(y\) in terms of \(a\) and \(b\) From the point, we can compare: - \(x = a \tan \theta\) implies \(a = 5\) - \(y = b \sec \theta\) implies \(b = 3\) ### Step 4: Use the formula for eccentricity The eccentricity \(e\) of a hyperbola is given by the formula: \[ e = \sqrt{1 + \frac{a^2}{b^2}} \] ### Step 5: Substitute the values of \(a\) and \(b\) Now substituting \(a = 5\) and \(b = 3\) into the eccentricity formula: \[ e = \sqrt{1 + \frac{5^2}{3^2}} = \sqrt{1 + \frac{25}{9}} = \sqrt{1 + \frac{25}{9}} = \sqrt{\frac{9 + 25}{9}} = \sqrt{\frac{34}{9}} \] ### Step 6: Simplify the expression This simplifies to: \[ e = \frac{\sqrt{34}}{3} \] ### Final Answer Thus, the eccentricity of the hyperbola is: \[ \frac{\sqrt{34}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( OBJECTIVE) Level - II|20 Videos
  • HYPERBOLA

    FIITJEE|Exercise COMPREHENSIONS|9 Videos
  • HYPERBOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( SUBJECTIVE) Level - II|11 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos

Similar Questions

Explore conceptually related problems

If any point on a hyperbola is (3tan theta,2sec theta) then eccentricity of the hyperbola is

if sec theta+tan theta=2 then find the the value of sec theta.

If the tangent at the point P(a sec theta , b tan theta) to the hyperbola passes through the point where a directrix of the hyperbola meets the positive side of the transverse axis, then theta is equal to

Let A(sec theta , 2 tan theta) and B(sec phi , 2 tan phi) , where theta+phi=pi//2 be two points on the hyperbola 2x^(2)-y^(2)=2 . If (alpha, beta) is the point of the intersection of the normals to the hyperbola at A and B, then (2beta)^(2) is equal to _________.

tan^(2)theta+sec theta=5, then find the value of cos theta

If tan^(2)theta-sec theta-5=0 for exactly 9 values of theta in[0,(n pi)/(2)];n in N, then the greatest value of n is

If P(3 sec theta,2 tan theta) and Q(3 sec phi , 2 tan phi) where theta+pi=(phi)/(2) be two distainct points on the hyperbola then the ordinate of the point of intersection of the normals at p and Q is

If a+b tan theta=sec theta and b-a tan theta=3sec theta then find the value of a^(2)+b^(2)

If a+b tan theta=sec theta and b-a tan theta=3sec theta then find the value of a^(2)+b^(2)

FIITJEE-HYPERBOLA-ASSIGNMENT PROBLEMS ( OBJECTIVE) Level - I
  1. The equation to the hyperbola of given transverse axis 2a along x- axi...

    Text Solution

    |

  2. Let (5 tan theta , 3 sec theta) be a point on the hyperbola for all va...

    Text Solution

    |

  3. The angle between the lines joining the origin to the points of inters...

    Text Solution

    |

  4. If the ratio of transverse and conjugate axis of the hyperbola x^2 / a...

    Text Solution

    |

  5. The equation of the hyperbola whose foci are (6, 5), (–4, 5) and eccen...

    Text Solution

    |

  6. If alpha+beta=3pi , then the chord joining the points alpha and beta f...

    Text Solution

    |

  7. From any point to the hyperbola ^2/a^2-y^2/b^2=1, tangents are drawn ...

    Text Solution

    |

  8. If the foci of the ellipse x^(2)/16 + y^(2)/b^(2) =1 and the hyperbo...

    Text Solution

    |

  9. Let P(a sectheta, btantheta) and Q(aseccphi , btanphi) (where theta+...

    Text Solution

    |

  10. Let P(a sectheta, btantheta) and Q(aseccphi , btanphi) (where theta+...

    Text Solution

    |

  11. A tangent to the parabola x^(2) = 4ay meets the hyperbola x^(2) - y^(2...

    Text Solution

    |

  12. The focus of the rectangular hyperbola (x + 4) (y-4) = 16 is

    Text Solution

    |

  13. If the hyperbola xy = c^(2) touches the curve x^(2) + 2y^(2) + alpha x...

    Text Solution

    |

  14. The line y = 4x + c touches the hyperbola x^(2) - y^(2) = 1 if

    Text Solution

    |

  15. Consider the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1. Area of the tria...

    Text Solution

    |

  16. Number of point (s) outside the hyperbola x^(2)/25 - y^(2)/36 = 1 from...

    Text Solution

    |

  17. If e is the eccentricity of x^2/a^2-y^2/b^2=1 and theta be the angle b...

    Text Solution

    |

  18. A hyperbola, having the transverse axis of length 2 sin theta, is conf...

    Text Solution

    |

  19. If the tangent and the normal to a rectangular hyperbola xy = c^(2) , ...

    Text Solution

    |

  20. From a point on the line y=x+c, c(parameter), tangents are drawn to th...

    Text Solution

    |