Home
Class 12
MATHS
Let P(a sectheta, btantheta) and Q(asec...

Let `P(a sectheta, btantheta) and Q(aseccphi , btanphi)` (where `theta+phi=pi/2` be two points on the hyperbola `x^2/a^2-y^2/b^2=1` If `(h, k)` is the point of intersection of the normals at `P and Q` then `k` is equal to (A) `(a^2+b^2)/a` (B) `-((a^2+b^2)/a)` (C) `(a^2+b^2)/b` (D) `-((a^2+b^2)/b)`

A

`(a^(2) + b^(2))/a`

B

`- ((a^(2) + b^(2))/a) `

C

` (a^(2) + b^(2))/b`

D

`- ((a^(2) + b^(2))/b)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( OBJECTIVE) Level - II|20 Videos
  • HYPERBOLA

    FIITJEE|Exercise COMPREHENSIONS|9 Videos
  • HYPERBOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( SUBJECTIVE) Level - II|11 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos

Similar Questions

Explore conceptually related problems

Let P(a sec theta,b tan theta) and Q(a sec c phi,b tan phi) (where theta+phi=(pi)/(2) be two points on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 If (h,k) is the point of intersection of the normals at P and Q then k is equal to (A) (a^(2)+b^(2))/(a)(B)-((a^(2)+b^(2))/(a))( C) (a^(2)+b^(2))/(b)(D)-((a^(2)+b^(2))/(b))

Let A(sec theta , 2 tan theta) and B(sec phi , 2 tan phi) , where theta+phi=pi//2 be two points on the hyperbola 2x^(2)-y^(2)=2 . If (alpha, beta) is the point of the intersection of the normals to the hyperbola at A and B, then (2beta)^(2) is equal to _________.

If P(theta),Q(theta+(pi)/(2)) are two points on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and a is the angle between normals at P and Q, then

If the eccentric angles of two points P and Q on the ellipse x^2/a^2+y^2/b^2 are alpha,beta such that alpha +beta=pi/2 , then the locus of the point of intersection of the normals at P and Q is

FIITJEE-HYPERBOLA-ASSIGNMENT PROBLEMS ( OBJECTIVE) Level - I
  1. If the foci of the ellipse x^(2)/16 + y^(2)/b^(2) =1 and the hyperbo...

    Text Solution

    |

  2. Let P(a sectheta, btantheta) and Q(aseccphi , btanphi) (where theta+...

    Text Solution

    |

  3. Let P(a sectheta, btantheta) and Q(aseccphi , btanphi) (where theta+...

    Text Solution

    |

  4. A tangent to the parabola x^(2) = 4ay meets the hyperbola x^(2) - y^(2...

    Text Solution

    |

  5. The focus of the rectangular hyperbola (x + 4) (y-4) = 16 is

    Text Solution

    |

  6. If the hyperbola xy = c^(2) touches the curve x^(2) + 2y^(2) + alpha x...

    Text Solution

    |

  7. The line y = 4x + c touches the hyperbola x^(2) - y^(2) = 1 if

    Text Solution

    |

  8. Consider the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1. Area of the tria...

    Text Solution

    |

  9. Number of point (s) outside the hyperbola x^(2)/25 - y^(2)/36 = 1 from...

    Text Solution

    |

  10. If e is the eccentricity of x^2/a^2-y^2/b^2=1 and theta be the angle b...

    Text Solution

    |

  11. A hyperbola, having the transverse axis of length 2 sin theta, is conf...

    Text Solution

    |

  12. If the tangent and the normal to a rectangular hyperbola xy = c^(2) , ...

    Text Solution

    |

  13. From a point on the line y=x+c, c(parameter), tangents are drawn to th...

    Text Solution

    |

  14. Locus of the points of intersection of perpendicular tangents to x^(2)...

    Text Solution

    |

  15. The angle between tangents drawn to the curve xy = 4 from the point (1...

    Text Solution

    |

  16. The product of perpendiculars drawn from any point on a hyperbola to i...

    Text Solution

    |

  17. A normal to the hyperbola x^2-4y^2=4 meets the x and y axes at A and B...

    Text Solution

    |

  18. The locus of mid - point of the portion of a line of constant slope 'm...

    Text Solution

    |

  19. Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1If t...

    Text Solution

    |

  20. Let the eccentricity of the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 b...

    Text Solution

    |