Home
Class 12
MATHS
The principal axes of the hyperbola ax^(...

The principal axes of the hyperbola `ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c = 0 ` are parallel to the lines

A

`ax^(2) + 2hxy + by^(2) = 0 `

B

`h(x^(2) - y^(2)) = (a - b) xy `

C

`bx^(2) - 2hxy + ay^(2) = 0 `

D

`(a + b)(x^(2) - y^(2)) = h (a - b) xy `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    FIITJEE|Exercise MATCH THE COLUMN|6 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise ASSIGNMENT PROBLEMS ( OBJECTIVE) Level - II|20 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos

Similar Questions

Explore conceptually related problems

If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents parallel straight lines, then

If the centre of the hyperbola whose equation is ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c = 0 " be " (alpha, beta) , then find the equation of the asymptotes.

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents two parallel straight lines, then

If the equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents a pair of parallel lines, then

If the equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 resents a pair of parallel lines then prove that

Find the centre and radius of the circle ax^(2) + ay^(2) + 2gx + 2fy + c = 0 where a ne 0 .