Home
Class 12
MATHS
The system has non trivial solution if ...

The system has non trivial solution if `|{:("sin"3theta,-1,1),("cos"2theta,4,3),(2,7,7):}|` =0 then `theta =`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \theta \) such that the determinant of the given matrix is equal to zero. The matrix is: \[ \begin{vmatrix} \sin 3\theta & -1 & 1 \\ \cos 2\theta & 4 & 3 \\ 2 & 7 & 7 \end{vmatrix} = 0 \] ### Step 1: Calculate the Determinant To find the determinant, we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where the matrix is represented as: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] For our matrix: - \( a = \sin 3\theta \) - \( b = -1 \) - \( c = 1 \) - \( d = \cos 2\theta \) - \( e = 4 \) - \( f = 3 \) - \( g = 2 \) - \( h = 7 \) - \( i = 7 \) Now, substituting into the determinant formula: \[ \text{det} = \sin 3\theta (4 \cdot 7 - 3 \cdot 7) - (-1)(\cos 2\theta \cdot 7 - 3 \cdot 2) + 1(\cos 2\theta \cdot 7 - 4 \cdot 2) \] Calculating each term: 1. \( 4 \cdot 7 - 3 \cdot 7 = 28 - 21 = 7 \) 2. \( -(-1)(\cos 2\theta \cdot 7 - 6) = \cos 2\theta \cdot 7 - 6 \) 3. \( 1(\cos 2\theta \cdot 7 - 8) = \cos 2\theta \cdot 7 - 8 \) Putting it all together: \[ \text{det} = \sin 3\theta \cdot 7 + \cos 2\theta \cdot 7 - 6 + \cos 2\theta \cdot 7 - 8 \] Combine like terms: \[ \text{det} = 7\sin 3\theta + 14\cos 2\theta - 14 \] ### Step 2: Set the Determinant to Zero Now, we set the determinant equal to zero: \[ 7\sin 3\theta + 14\cos 2\theta - 14 = 0 \] Dividing through by 7 gives: \[ \sin 3\theta + 2\cos 2\theta - 2 = 0 \] ### Step 3: Rearranging the Equation Rearranging gives: \[ \sin 3\theta + 2\cos 2\theta = 2 \] ### Step 4: Use Trigonometric Identities We know that \( \cos 2\theta = 2\cos^2 \theta - 1 \). Substituting this into the equation gives: \[ \sin 3\theta + 2(2\cos^2 \theta - 1) = 2 \] This simplifies to: \[ \sin 3\theta + 4\cos^2 \theta - 2 = 2 \] Thus, \[ \sin 3\theta + 4\cos^2 \theta = 4 \] ### Step 5: Solve for \( \theta \) Since \( \sin 3\theta \) can only take values between -1 and 1, and \( 4\cos^2 \theta \) can take values from 0 to 4, the equation \( \sin 3\theta + 4\cos^2 \theta = 4 \) implies: \[ \sin 3\theta = 4 - 4\cos^2 \theta \] The maximum value of \( \sin 3\theta \) is 1, so we need \( 4 - 4\cos^2 \theta \leq 1 \): \[ 4\cos^2 \theta \geq 3 \implies \cos^2 \theta \geq \frac{3}{4} \] Thus, \[ \cos \theta \geq \frac{\sqrt{3}}{2} \text{ or } \cos \theta \leq -\frac{\sqrt{3}}{2} \] This gives us: \[ \theta = n\pi \pm \frac{\pi}{6} \] ### Final Answer The values of \( \theta \) are: \[ \theta = n\pi + \frac{\pi}{6} \quad \text{or} \quad \theta = n\pi - \frac{\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL 1)|50 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL II)|20 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL 1) (FILL IN THE BLANKS )|3 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos
  • VECTOR

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If |(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0 , then the number of values of theta in [0, 1pi] is

If |[cos theta,-1,1],[cos2 theta,4,3],[2,7,7]|=0 then the number of values of theta in [0,2 pi]

Find the value of theta satisfying |(1, 1,sin3theta), (-4, 3,cos2theta), (7,-7,-2)|=0.

Consider the system linear equations in x ,y ,a n dz given by (sin3theta)x-y+z=0,(cos2theta)x+4y+3z=0,2x+7y+7z=0. the value of theta for which the system has a non-trivial solution : (A) theta = npi/2 (B) theta = (2n+1)pi/6 (C) theta = npi or npi + (-1)^n pi/6 (D) none of these

Find the value of theta if det[[1,1,sin3 theta-4,3,cos2 theta7,-7,-2]]=0

Find the value of theta if det[[1,1,sin3 theta-4,3,cos2 theta7,-7,-2]]=0

Consider the system of linear equations in x , ya n dz : ""(sin3theta)x-y+z=0(cos2theta)x+4y+3z=0 3x+7y+7z=0 Which of the following can be the value of theta for which the system has a non-trivial solution npi+(-1)^npi/6,AAn in Z npi+(-1)^npi/3,AAn in Z npi+(-1)^npi/9,AAn in Z none of these