Home
Class 12
MATHS
if 2(2 sin theta -1)x^(2)+8x+4(1+sin the...

if `2(2 sin theta -1)x^(2)+8x+4(1+sin theta)geforall x in R` then find the general solution of `theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2(2 \sin \theta - 1)x^2 + 8x + 4(1 + \sin \theta) \geq 0 \) for all \( x \in \mathbb{R} \), we will analyze the quadratic expression in terms of \( x \). ### Step 1: Identify the quadratic equation The given expression can be rewritten as: \[ f(x) = 2(2 \sin \theta - 1)x^2 + 8x + 4(1 + \sin \theta) \] This is a quadratic equation in the form \( ax^2 + bx + c \) where: - \( a = 2(2 \sin \theta - 1) \) - \( b = 8 \) - \( c = 4(1 + \sin \theta) \) ### Step 2: Condition for the quadratic to be non-negative For the quadratic \( f(x) \) to be non-negative for all \( x \in \mathbb{R} \), two conditions must be satisfied: 1. The leading coefficient \( a \) must be non-negative: \[ 2(2 \sin \theta - 1) \geq 0 \] This simplifies to: \[ 2 \sin \theta - 1 \geq 0 \implies \sin \theta \geq \frac{1}{2} \] 2. The discriminant \( D \) must be less than or equal to zero: \[ D = b^2 - 4ac \leq 0 \] Substituting the values of \( a \), \( b \), and \( c \): \[ D = 8^2 - 4 \cdot 2(2 \sin \theta - 1) \cdot 4(1 + \sin \theta) \leq 0 \] Simplifying this gives: \[ 64 - 32(2 \sin \theta - 1)(1 + \sin \theta) \leq 0 \] ### Step 3: Simplify the discriminant condition Expanding the discriminant condition: \[ 64 - 32(2 \sin \theta + 2 \sin^2 \theta - 1 - \sin \theta) \leq 0 \] This simplifies to: \[ 64 - 32(2 \sin^2 \theta + \sin \theta + 1) \leq 0 \] \[ 64 - 64 \sin^2 \theta - 32 \sin \theta - 32 \leq 0 \] \[ 32 - 64 \sin^2 \theta - 32 \sin \theta \leq 0 \] \[ -64 \sin^2 \theta - 32 \sin \theta + 32 \leq 0 \] Dividing through by -32 (reversing the inequality): \[ 2 \sin^2 \theta + \sin \theta - 1 \geq 0 \] ### Step 4: Factor the quadratic Factoring the quadratic: \[ (2 \sin \theta + 2)(\sin \theta - 1) \geq 0 \] The roots of the equation are: \[ \sin \theta = -1 \quad \text{and} \quad \sin \theta = \frac{1}{2} \] ### Step 5: Analyze the intervals To find the intervals where the product is non-negative, we analyze the sign of the factors: 1. \( \sin \theta \leq -1 \) (not possible) 2. \( -1 < \sin \theta < \frac{1}{2} \) (negative) 3. \( \sin \theta = \frac{1}{2} \) (zero) 4. \( \sin \theta > \frac{1}{2} \) (positive) Thus, the valid intervals for \( \sin \theta \) are: \[ \sin \theta \geq \frac{1}{2} \] ### Step 6: General solution for \( \theta \) The general solution for \( \theta \) where \( \sin \theta \geq \frac{1}{2} \) is: \[ \theta = n\pi + (-1)^n \frac{\pi}{6}, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL 1)|50 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL II)|20 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL 1) (FILL IN THE BLANKS )|3 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos
  • VECTOR

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Find the general solution of 2sin theta+1=0

Find the general solution of cos^2theta(sin^2theta)=1

Find the general solution of cos^2theta-1/sin^2theta=-1

Given 12sin theta+5cos theta=2x^(2)-8x+21 and theta and x are the solutions of the above then theta x is

If r sin theta=3,r=4(1+sin theta) where 0<=theta<=2 pi then theta equal to