Home
Class 12
MATHS
Number of solution of the equation 4sin^...

Number of solution of the equation `4sin^(2)x+tan^(2)x+cot^(2)x+cosec^(2)x=6` in `[0,pi]` is

A

1

B

2

C

0

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of solutions of the equation \( 4\sin^2 x + \tan^2 x + \cot^2 x + \csc^2 x = 6 \) in the interval \([0, \pi]\), we will follow these steps: ### Step 1: Rewrite the equation We start by rewriting the equation: \[ 4\sin^2 x + \tan^2 x + \cot^2 x + \csc^2 x - 6 = 0 \] ### Step 2: Use trigonometric identities We know the following identities: - \(\tan^2 x = \frac{\sin^2 x}{\cos^2 x}\) - \(\cot^2 x = \frac{\cos^2 x}{\sin^2 x}\) - \(\csc^2 x = \frac{1}{\sin^2 x}\) Substituting these identities into the equation gives: \[ 4\sin^2 x + \frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\sin^2 x} + \frac{1}{\sin^2 x} - 6 = 0 \] ### Step 3: Simplify the equation To simplify, let \(y = \sin^2 x\). Then, \(\cos^2 x = 1 - y\). The equation becomes: \[ 4y + \frac{y}{1-y} + \frac{1-y}{y} + \frac{1}{y} - 6 = 0 \] ### Step 4: Combine terms Combining the fractions: \[ 4y + \frac{y^2 + 1 - y}{y(1-y)} + \frac{1}{y} - 6 = 0 \] This simplifies to: \[ 4y + \frac{y^2 + 1 - y + 1 - 6y}{y(1-y)} = 0 \] ### Step 5: Set the equation to zero Now we can multiply through by \(y(1-y)\) to eliminate the denominator (noting that \(y \neq 0\) and \(y \neq 1\)): \[ 4y^2(1-y) + y^2 + 1 - y - 6y = 0 \] ### Step 6: Solve the resulting polynomial This leads to a polynomial in \(y\). We can rearrange and combine like terms: \[ (4 - 6)y^2 + (1 - 4)y + 1 = 0 \] This simplifies to: \[ -2y^2 - 3y + 1 = 0 \] ### Step 7: Use the quadratic formula We can apply the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ y = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(-2)(1)}}{2(-2)} = \frac{3 \pm \sqrt{9 + 8}}{-4} = \frac{3 \pm \sqrt{17}}{-4} \] ### Step 8: Find the roots Calculating the roots: \[ y_1 = \frac{3 + \sqrt{17}}{-4}, \quad y_2 = \frac{3 - \sqrt{17}}{-4} \] ### Step 9: Determine valid solutions We need to check if these values of \(y\) (which represent \(\sin^2 x\)) are within the interval \([0, 1]\). ### Step 10: Find the corresponding angles For valid \(y\) values, we can find \(x\) using: \[ \sin x = \sqrt{y} \quad \text{and} \quad \sin x = -\sqrt{y} \text{ (not valid in } [0, \pi]) \] ### Step 11: Count the solutions Each valid \(y\) corresponds to two angles in \([0, \pi]\) if \(\sqrt{y}\) is valid. We find that there are two valid solutions in total. ### Conclusion Thus, the number of solutions of the equation \( 4\sin^2 x + \tan^2 x + \cot^2 x + \csc^2 x = 6 \) in the interval \([0, \pi]\) is **2**.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL II)|20 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise COMPREHENSIONS I|3 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL II)|16 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos
  • VECTOR

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation 4sin^(2)x+tan^(2)x+cot^(2)x+"cosec"^(2)x=6" in " [0, 2pi] :

The number of solutions of the equation 4 sin^(2) x + tan^(2)x + cot^(2)x + "cosec"^(2)x = 6 in [0, 2 pi]

The number of solution(s) of trigonometric equation 4cos^(2)x+tan^(2)x+cot^(2)x+sec^(2)x=6 in

Number of solutions of the equation sin^(2)x+sin^(2)2x-sin^(2)3x-sin^(2)4x=0 lying in the interval (0,(pi)/(2))]

Number of solutions of the equation e^(-sin^(2)x)=tan2x in [0,10 pi] is

The number of solutions of the equation cos6x+tan^(2)x+cos(6x)tan^(2)x=1 in the interval [0,2 pi] is (a)4(b)5(c)6(d)7

Number of solutions of the equation sin^(4)x-cos^(2)x sin x+2sin^(2)x+sin x=0 in 0<=x<=3 pi

FIITJEE-TRIGONOMETIC EQUATIONS -ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL 1)
  1. All the pairs (x, y) that satisfy the inequality 2 sqrt(sin^(2) x - ...

    Text Solution

    |

  2. If (1-tan theta)(1+tan theta)sec^2 theta+2^(tan^2 theta)=0 then in the...

    Text Solution

    |

  3. Number of solution of the equation 4sin^(2)x+tan^(2)x+cot^(2)x+cosec^(...

    Text Solution

    |

  4. The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin ...

    Text Solution

    |

  5. The number of values of x in the interval [0,5pi] satisfying the equat...

    Text Solution

    |

  6. The set of values of x for which sinx cos^(3)x gt cos x sin^(3)x,0le x...

    Text Solution

    |

  7. a in N, a <=100}, and [tan^2 x] -tan x- a=0 has a real roots (where, [...

    Text Solution

    |

  8. If 4 sin^(2) x-8sin x+ 3 le 0,0le x le 2pi then the solution set for x...

    Text Solution

    |

  9. The real roots of the equation cos^7x+sin^4x=1 in the interval (-pi,pi...

    Text Solution

    |

  10. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) then the value of x^(100)+y...

    Text Solution

    |

  11. The number of solutions of the equation [y+[y]]=2 cosx, where y=(1)...

    Text Solution

    |

  12. Find the least positive angle measured in degrees satisfy sin^3x +sin^...

    Text Solution

    |

  13. The set of values of x, for which (tan 3x - tan 2x)/(1+tan 3x tan 2x)=...

    Text Solution

    |

  14. Solve the inequality sin2x gtsqrt(2)sin^2x+(2-sqrt(2))cos^2x

    Text Solution

    |

  15. Find the number of integral value of n so that sinx(sinx+cosx)=n has a...

    Text Solution

    |

  16. "tan"|x| = |"tan" x|, if

    Text Solution

    |

  17. If cos 3A +cos 3B+cos 3C=1 then one of the angles of the triangle ABC ...

    Text Solution

    |

  18. Find the value of x which satisfy equation 2 tan^(-1) 2x = sin^(-1).(4...

    Text Solution

    |

  19. If 24 cos^(2)x+8sin 2x cos x +18 cos x+6 sin 2x=15 +10 sin x then gene...

    Text Solution

    |

  20. If the equation sin theta(sin theta + 2 cos theta )=a has a real solut...

    Text Solution

    |